Home Chemistry Part-dependent development of Pt on MoS2 for extremely environment friendly H2 evolution

Part-dependent development of Pt on MoS2 for extremely environment friendly H2 evolution

0
Part-dependent development of Pt on MoS2 for extremely environment friendly H2 evolution

[ad_1]

  • Chhowalla, M. et al. The chemistry of two-dimensional layered transition steel dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Part engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoselov, Ok. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D supplies and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G. et al. MoS2 monolayer catalyst doped with remoted Co atoms for the hydrodeoxygenation response. Nat. Chem. 9, 810–816 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geim, A. Ok. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Resolution-phase epitaxial development of noble steel nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).

  • Shi, Y. et al. Website-specific electrodeposition allows self-terminating development of atomically dispersed steel catalysts. Nat. Commun. 11, 4558 (2020).

  • Solar, Y. et al. Interface-mediated noble steel deposition on transition steel dichalcogenide nanostructures. Nat. Chem. 12, 284–293 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Excessive phase-purity 1T′-MoS2– and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

  • Liu, L. et al. Part-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).

  • Lin, Z. et al. Resolution-processable 2D semiconductors for prime efficiency large-area electronics. Nature 562, 254–258 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered supplies. Science 331, 568–571 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, J. et al. Excessive part purity of large-sized 1T′-MoS2 monolayers with 2D superconductivity. Adv. Mater. 31, 1900568 (2019).

  • Shen, R. et al. Excessive-concentration single atomic Pt websites on hole CuSx for selective O2 discount to H2O2 in acid answer. Chem 5, 2099–2110 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, B. et al. Single-atom catalysis of CO oxidation utilizing Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Y. et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 10, 4500 (2019).

  • Borodko, Y., Ercius, P., Pushkarev, V., Thompson, C. & Somorjai, G. From single Pt atoms to Pt nanocrystals: photoreduction of Pt2+ inside a PAMAM dendrimer. J. Phys. Chem. Lett. 3, 236–241 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hansen, J. N. et al. Is there something higher than Pt for HER? ACS Vitality Lett. 6, 1175–1180 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution response kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zalitis, C. M., Sharman, J., Wright, E. & Kucernak, A. R. Properties of the hydrogen oxidation response on Pt/C catalysts at optimised excessive mass transport circumstances and its relevance to the anode response in PEFCs and cathode reactions in electrolysers. Electrochim. Acta 176, 763–776 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tian, Y., Yu, L., Zhuang, C., Zhang, G. & Solar, S. Quick synthesis of Pt single-atom catalyst with excessive intrinsic exercise for hydrogen evolution response by plasma sputtering. Mater. As we speak Vitality 22, 100877 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Tungsten oxide/diminished graphene oxide aerogel with low-content platinum as high-performance electrocatalyst for hydrogen evolution response. Small 17, 2102159 (2021).

  • Lu, F. et al. Engineering platinum-oxygen twin catalytic websites through cost switch in direction of extremely environment friendly hydrogen evolution. Angew. Chem. Int. Ed 59, 17712–17718 (2020).

  • Ye, S. et al. Extremely secure single Pt atomic websites anchored on aniline-stacked graphene for hydrogen evolution response. Vitality Environ. Sci. 12, 1000–1007 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution response. Nat. Commun. 7, 13638 (2016).

  • Kucernak, A. R. & Zalitis, C. Common fashions for the electrochemical hydrogen oxidation and hydrogen evolution reactions: theoretical derivation and experimental outcomes below close to mass-transport free circumstances. J. Phys. Chem. C 120, 10721–10745 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Durst, J., Simon, C., Hasché, F. & Gasteiger, H. A. Hydrogen oxidation and evolution response kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162, F190–F203 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nørskov, J. Ok. et al. Developments within the trade present for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article 

    Google Scholar
     

  • Esparbé, I. et al. Construction and electrocatalytic efficiency of carbon-supported platinum nanoparticles. J. Energy Sources 190, 201–209 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, B., Liao, F., Solar, Y., Cheng, Y. & Shao, M. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution response utilizing Si nanowires as a sacrificial template. Nanoscale 9, 10138–10144 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Lee, J. Ok., Zhou, S., Pasta, M. & Warner, J. H. Synthesis of floor grown Pt nanoparticles on edge-enriched MoS2 porous skinny movies for enhancing electrochemical efficiency. Chem. Mater. 31, 387–397 (2019).

    Article 

    Google Scholar
     

  • Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution response mechanism. Vitality Environ. Sci. 7, 2255–2260 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Neyerlin, Ok. C., Gu, W., Jorne, J. & Gasteiger, H. A. Examine of the trade present density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154, B631–B635 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, C. T. Dedication of Core Construction Periodicity and Level Defect Density Alongside Dislocations. PhD thesis, Arizona State Univ. (2002).

  • Du, Y. et al. XAFCA: a brand new XAFS beamline for catalysis analysis. J. Synchrotron Radiat. 22, 839–843 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bunău, O. & Joly, Y. Self-consistent elements of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

  • Lin, X., Zalitis, C. M., Sharman, J. & Kucernak, A. Electrocatalyst efficiency on the gasoline/electrolyte interface below high-mass-transport circumstances: optimization of the “floating electrode” technique. ACS Appl. Mater. Interfaces 12, 47467–47481 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

  • Hammer, B., Hansen, L. B. & Nørskov, J. Ok. Improved adsorption energetics inside density-functional idea utilizing revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here