[ad_1]
Chhowalla, M. et al. The chemistry of two-dimensional layered transition steel dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
Chen, Y. et al. Part engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256 (2020).
Novoselov, Ok. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D supplies and van der Waals heterostructures. Science 353, aac9439 (2016).
Liu, G. et al. MoS2 monolayer catalyst doped with remoted Co atoms for the hydrodeoxygenation response. Nat. Chem. 9, 810–816 (2017).
Geim, A. Ok. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).
Huang, X. et al. Resolution-phase epitaxial development of noble steel nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).
Shi, Y. et al. Website-specific electrodeposition allows self-terminating development of atomically dispersed steel catalysts. Nat. Commun. 11, 4558 (2020).
Solar, Y. et al. Interface-mediated noble steel deposition on transition steel dichalcogenide nanostructures. Nat. Chem. 12, 284–293 (2020).
Yu, Y. et al. Excessive phase-purity 1T′-MoS2– and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).
Liu, L. et al. Part-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).
Lin, Z. et al. Resolution-processable 2D semiconductors for prime efficiency large-area electronics. Nature 562, 254–258 (2018).
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered supplies. Science 331, 568–571 (2011).
Peng, J. et al. Excessive part purity of large-sized 1T′-MoS2 monolayers with 2D superconductivity. Adv. Mater. 31, 1900568 (2019).
Shen, R. et al. Excessive-concentration single atomic Pt websites on hole CuSx for selective O2 discount to H2O2 in acid answer. Chem 5, 2099–2110 (2019).
Qiao, B. et al. Single-atom catalysis of CO oxidation utilizing Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).
Ren, Y. et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 10, 4500 (2019).
Borodko, Y., Ercius, P., Pushkarev, V., Thompson, C. & Somorjai, G. From single Pt atoms to Pt nanocrystals: photoreduction of Pt2+ inside a PAMAM dendrimer. J. Phys. Chem. Lett. 3, 236–241 (2012).
Hansen, J. N. et al. Is there something higher than Pt for HER? ACS Vitality Lett. 6, 1175–1180 (2021).
Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution response kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).
Zalitis, C. M., Sharman, J., Wright, E. & Kucernak, A. R. Properties of the hydrogen oxidation response on Pt/C catalysts at optimised excessive mass transport circumstances and its relevance to the anode response in PEFCs and cathode reactions in electrolysers. Electrochim. Acta 176, 763–776 (2015).
Tian, Y., Yu, L., Zhuang, C., Zhang, G. & Solar, S. Quick synthesis of Pt single-atom catalyst with excessive intrinsic exercise for hydrogen evolution response by plasma sputtering. Mater. As we speak Vitality 22, 100877 (2021).
Li, Y. et al. Tungsten oxide/diminished graphene oxide aerogel with low-content platinum as high-performance electrocatalyst for hydrogen evolution response. Small 17, 2102159 (2021).
Lu, F. et al. Engineering platinum-oxygen twin catalytic websites through cost switch in direction of extremely environment friendly hydrogen evolution. Angew. Chem. Int. Ed 59, 17712–17718 (2020).
Ye, S. et al. Extremely secure single Pt atomic websites anchored on aniline-stacked graphene for hydrogen evolution response. Vitality Environ. Sci. 12, 1000–1007 (2019).
Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution response. Nat. Commun. 7, 13638 (2016).
Kucernak, A. R. & Zalitis, C. Common fashions for the electrochemical hydrogen oxidation and hydrogen evolution reactions: theoretical derivation and experimental outcomes below close to mass-transport free circumstances. J. Phys. Chem. C 120, 10721–10745 (2016).
Durst, J., Simon, C., Hasché, F. & Gasteiger, H. A. Hydrogen oxidation and evolution response kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162, F190–F203 (2015).
Nørskov, J. Ok. et al. Developments within the trade present for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).
Esparbé, I. et al. Construction and electrocatalytic efficiency of carbon-supported platinum nanoparticles. J. Energy Sources 190, 201–209 (2009).
Jiang, B., Liao, F., Solar, Y., Cheng, Y. & Shao, M. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution response utilizing Si nanowires as a sacrificial template. Nanoscale 9, 10138–10144 (2017).
Li, S., Lee, J. Ok., Zhou, S., Pasta, M. & Warner, J. H. Synthesis of floor grown Pt nanoparticles on edge-enriched MoS2 porous skinny movies for enhancing electrochemical efficiency. Chem. Mater. 31, 387–397 (2019).
Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution response mechanism. Vitality Environ. Sci. 7, 2255–2260 (2014).
Neyerlin, Ok. C., Gu, W., Jorne, J. & Gasteiger, H. A. Examine of the trade present density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154, B631–B635 (2007).
Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
Koch, C. T. Dedication of Core Construction Periodicity and Level Defect Density Alongside Dislocations. PhD thesis, Arizona State Univ. (2002).
Du, Y. et al. XAFCA: a brand new XAFS beamline for catalysis analysis. J. Synchrotron Radiat. 22, 839–843 (2015).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Bunău, O. & Joly, Y. Self-consistent elements of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).
Lin, X., Zalitis, C. M., Sharman, J. & Kucernak, A. Electrocatalyst efficiency on the gasoline/electrolyte interface below high-mass-transport circumstances: optimization of the “floating electrode” technique. ACS Appl. Mater. Interfaces 12, 47467–47481 (2020).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Hammer, B., Hansen, L. B. & Nørskov, J. Ok. Improved adsorption energetics inside density-functional idea utilizing revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).
[ad_2]