Home Chemistry Rewiring photosynthetic electron transport chains for photo voltaic vitality conversion

Rewiring photosynthetic electron transport chains for photo voltaic vitality conversion

Rewiring photosynthetic electron transport chains for photo voltaic vitality conversion

[ad_1]

  • Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Wiley, 2021).

  • Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1857, 247–255 (2016).

    Article 

    Google Scholar
     

  • Blankenship, R. E. et al. Evaluating photosynthetic and photovoltaic efficiencies and recognizing the potential for enchancment. Science 332, 805–809 (2011).

    Article 

    Google Scholar
     

  • Nayak, P. Ok., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic photo voltaic cell applied sciences: analysing the state-of-the-art. Nat. Rev. Mater. 4, 269–285 (2019).

    Article 

    Google Scholar
     

  • Kato, N. et al. Photo voltaic gasoline manufacturing from CO2 utilizing a 1 m-square-sized reactor with a solar-to-formate conversion effectivity of 10.5%. ACS Maintain. Chem. Eng. 9, 16031–16037 (2021).

    Article 

    Google Scholar
     

  • Andrei, V. et al. Floating perovskite-BiVO4 units for scalable photo voltaic gasoline manufacturing. Nature 608, 518–522 (2022).

    Article 

    Google Scholar
     

  • Wey, L. T. et al. The event of biophotovoltaic programs for energy technology and organic evaluation. ChemElectroChem 6, 5375–5386 (2019).

    Article 

    Google Scholar
     

  • Kornienko, N., Zhang, J. Z., Sakimoto, Ok. Ok., Yang, P. & Reisner, E. Interfacing nature’s catalytic equipment with artificial supplies for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    Article 

    Google Scholar
     

  • Dong, F., Lee, Y. S., Gaffney, E. M., Liou, W. & Minteer, S. D. Engineering cyanobacterium with transmembrane electron switch means for bioelectrochemical nitrogen fixation. ACS Catal. 11, 13169–13179 (2021).

    Article 

    Google Scholar
     

  • Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    Article 

    Google Scholar
     

  • Teodor, A. H. & Bruce, B. D. Placing photosystem I to work: actually inexperienced vitality. Developments Biotechnol. 38, 1329–1342 (2020).

    Article 

    Google Scholar
     

  • Schmermund, L. et al. Picture-biocatalysis: biotransformations within the presence of sunshine. ACS Catal. 9, 4115–4144 (2019).

    Article 

    Google Scholar
     

  • Utschig, L. M., Soltau, S. R., Mulfort, Ok. L., Niklas, J. & Poluektov, O. G. Z-scheme photo voltaic water splitting through self-assembly of photosystem I-catalyst hybrids in thylakoid membranes. Chem. Sci. 9, 8504–8512 (2018).

    Article 

    Google Scholar
     

  • Rabaey, Ok. & Rozendal, R. A. Microbial electrosynthesis — revisiting {the electrical} route for microbial manufacturing. Nat. Rev. Microbiol. 8, 706–716 (2010).

    Article 

    Google Scholar
     

  • Chen, X. et al. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Jurkaš, V. et al. Transmembrane shuttling of photosynthetically produced electrons to propel extracellular biocatalytic redox reactions in a modular trend. Angew. Chem. Int. Ed. 61, e202207971 (2022).

    Article 

    Google Scholar
     

  • Miller, T. E. et al. Gentle-powered CO2 fixation in a chloroplast mimic with pure and artificial components. Science 368, 649–654 (2020).

    Article 

    Google Scholar
     

  • Bradley, R. W., Bombelli, P., Lea-Smith, D. J. & Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 present elevated electrogenic exercise in organic photo-voltaic programs. Phys. Chem. Chem. Phys. 15, 13611–13618 (2013).

    Article 

    Google Scholar
     

  • Jokel, M., Nagy, V., Tóth, S. Z., Kosourov, S. & Allahverdiyeva, Y. Elimination of the flavodiiron electron sink facilitates long-term H2 photoproduction in inexperienced algae. Biotechnol. Biofuels 12, 280 (2019).

    Article 

    Google Scholar
     

  • Mellor, S. B. et al. Fusion of ferredoxin and cytochrome P450 permits direct light-driven biosynthesis. ACS Chem. Biol. 11, 1862–1869 (2016).

    Article 

    Google Scholar
     

  • Wooden, P. M. & Bendall, D. S. The discount of plastocyanin by plastoquinol-1 within the presence of chloroplasts. Eur. J. Biochem. 61, 337–344 (1976).

    Article 

    Google Scholar
     

  • Grattieri, M. Purple micro organism photo-bioelectrochemistry: enthralling challenges and alternatives. Photochem. Photobiol. Sci. 19, 424–435 (2020).

    Article 

    Google Scholar
     

  • Clifford, E. R. et al. Phenazines as mannequin low-midpoint potential electron shuttles for photosynthetic bioelectrochemical programs. Chem. Sci. 12, 3328–3338 (2021).

    Article 

    Google Scholar
     

  • Schuergers, N., Werlang, C., Ajo-Franklin, C. M. & Boghossian, A. A. An artificial biology method to engineering dwelling photovoltaics. Power Environ. Sci. 10, 1102–1115 (2017).

    Article 

    Google Scholar
     

  • Zerfaß, C., Chen, J. & Soyer, O. S. Engineering microbial communities utilizing thermodynamic ideas and electrical interfaces. Curr. Opin. Biotechnol. 50, 121–127 (2018).

    Article 

    Google Scholar
     

  • Huang, Q., Jiang, F., Wang, L. & Yang, C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3, 318–329 (2017).

    Article 

    Google Scholar
     

  • Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Present information and up to date advances in understanding metabolism of the mannequin cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, 20193325 (2020).

    Article 

    Google Scholar
     

  • Anam, M., Gomes, H. I., Rivers, G., Gomes, R. L. & Wildman, R. Analysis of photoanode supplies utilized in biophotovoltaic programs for renewable vitality technology. Maintain. Power Fuels 5, 4209–4232 (2021).

    Article 

    Google Scholar
     

  • Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

    Article 

    Google Scholar
     

  • Zhou, X. et al. Conducting polymers–thylakoid hybrid supplies for water oxidation and photoelectric conversion. Adv. Electron. Mater. 5, 1800789 (2019).

    Article 

    Google Scholar
     

  • Hasan, Ok. et al. Picture-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).

    Article 

    Google Scholar
     

  • Longatte, G. et al. Investigation of photocurrents ensuing from a dwelling unicellular algae suspension with quinones over time. Chem. Sci. 9, 8271–8281 (2018).

    Article 

    Google Scholar
     

  • Hasan, Ok. et al. Photoelectrochemical communication between thylakoid membranes and gold electrodes by means of totally different quinone derivatives. ChemElectroChem 1, 131–139 (2014).

    Article 

    Google Scholar
     

  • Kuruvinashetti, Ok., Pakkiriswami, S. & Packirisamy, M. Gold nanoparticle interplay in algae enhancing quantum effectivity and energy technology in microphotosynthetic energy cells. Adv. Power Maintain. Res. 3, 2100135 (2022).

    Article 

    Google Scholar
     

  • Krieger-Liszkay, A. & Shimakawa, G. Regulation of the technology of reactive oxygen species throughout photosynthetic electron transport. Biochem. Soc. Trans. 50, 1025–1034 (2022).

    Article 

    Google Scholar
     

  • Bombelli, P. et al. Powering a microprocessor by photosynthesis. Power Environ. Sci. 15, 2529–2536 (2022).

    Article 

    Google Scholar
     

  • Wey, L. T. et al. A biophotoelectrochemical method to unravelling the position of cyanobacterial cell buildings in exoelectrogenesis. Electrochim. Acta 395, 139214 (2021).

    Article 

    Google Scholar
     

  • Altamura, E. et al. Chromatophores effectively promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment synthetic cells. Proc. Natl Acad. Sci. USA 118, e2012170118 (2021).

    Article 

    Google Scholar
     

  • Pinhassi, R. I. et al. Photosynthetic membranes of Synechocystis or crops convert daylight to photocurrent by means of totally different pathways resulting from totally different architectures. PLoS One 10, e0122616 (2015).

    Article 

    Google Scholar
     

  • Hasan, Ok. et al. Photobioelectrocatalysis of intact chloroplasts for photo voltaic vitality conversion. ACS Catal. 7, 2257–2265 (2017).

    Article 

    Google Scholar
     

  • Zhang, H., Catania, R. & Jeuken, L. J. C. Membrane protein modified electrodes in bioelectrocatalysis. Catalysts 10, 13290–13298 (2020).

    Article 

    Google Scholar
     

  • Rasmussen, M. & Minteer, S. D. Investigating the mechanism of thylakoid direct electron switch for photocurrent technology. Electrochim. Acta 126, 68–73 (2014).

    Article 

    Google Scholar
     

  • Bombelli, P. et al. Quantitative evaluation of the elements limiting solar energy transduction by Synechocystis sp. PCC 6803 in organic photovoltaic units. Power Environ. Sci. 4, 4690–4698 (2011).

    Article 

    Google Scholar
     

  • Pankratov, D., Pankratova, G. & Gorton, L. Thylakoid membrane-based photobioelectrochemical programs: achievements, limitations, and views. Curr. Opin. Electrochem. 19, 49–54 (2020).

    Article 

    Google Scholar
     

  • Croce, R. & Van Amerongen, H. Pure methods for photosynthetic mild harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    Article 

    Google Scholar
     

  • Oliver, T., Sánchez-Baracaldo, P., Larkum, A. W., Rutherford, A. W. & Cardona, T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochim. Biophys. Acta Bioenerg. 1862, 148400 (2021).

    Article 

    Google Scholar
     

  • Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    Article 

    Google Scholar
     

  • Joliot, P. & Johnson, G. N. Regulation of cyclic and linear electron movement in larger crops. Proc. Natl Acad. Sci. USA 108, 13317–13322 (2011).

    Article 

    Google Scholar
     

  • Miller, N. T., Vaughn, M. D. & Burnap, R. L. Electron movement by means of NDH-1 complexes is the foremost driver of cyclic electron flow-dependent proton pumping in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1862, 148354 (2021).

    Article 

    Google Scholar
     

  • Puggioni, V., Tempel, S. & Latifi, A. Distribution of hydrogenases in cyanobacteria: a phylum-wide genomic survey. Entrance. Genet. 7, 223 (2016).

    Article 

    Google Scholar
     

  • Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological functions of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).

    Article 

    Google Scholar
     

  • Nürnberg, D. J. et al. Photochemistry past the purple restrict in chlorophyll f-containing photosystems. Science 360, 1210–1213 (2018).

    Article 

    Google Scholar
     

  • Wichmann, J. et al. Engineering biocatalytic photo voltaic gasoline manufacturing: the PHOTOFUEL consortium. Developments Biotechnol. 39, 323–327 (2021).

    Article 

    Google Scholar
     

  • Jones, M. R. The petite purple photosynthetic powerpack. Biochem. Soc. Trans. 37, 400–407 (2009).

    Article 

    Google Scholar
     

  • Xin, Y. et al. Cryo-EM construction of the RC-LH core advanced from an early branching photosynthetic prokaryote. Nat. Commun. 9, 1568 (2018).

    Article 

    Google Scholar
     

  • Swainsbury, D. J. Ok. et al. Buildings of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Sci. Adv. 7, eabe2631 (2021).

    Article 

    Google Scholar
     

  • Oh-oka, H., Harada, J. & Azai, C. in Encyclopedia of Organic Chemistry: Third Version Vol. 2 333–351 (Elsevier, 2021).

  • George, D. M., Vincent, A. S. & Mackey, H. R. An summary of anoxygenic phototrophic micro organism and their functions in environmental biotechnology for sustainable useful resource restoration. Biotechnol. Rep. 28, e00563 (2020).

    Article 

    Google Scholar
     

  • LaSarre, B. et al. Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in a number of genera of purple nonsulfur micro organism. mBio 9, e00780-18 (2018).

    Article 

    Google Scholar
     

  • Gaisin, V. A., Kooger, R., Grouzdev, D. S., Gorlenko, V. M. & Pilhofer, M. Cryo-electron tomography reveals the advanced ultrastructural group of multicellular filamentous chloroflexota (Chloroflexi) micro organism. Entrance. Microbiol. 11, 1373 (2020).

    Article 

    Google Scholar
     

  • Capson-Tojo, G. et al. Purple phototrophic micro organism for useful resource restoration: challenges and alternatives. Biotechnol. Adv. 43, 107567 (2020).

    Article 

    Google Scholar
     

  • Tang, Ok. H., Tang, Y. J. & Blankenship, R. E. Carbon metabolic pathways in phototrophic micro organism and their broader evolutionary implications. Entrance. Microbiol. 2, 165 (2011).

    Article 

    Google Scholar
     

  • Herter, S. M., Kortlüke, C. M. & Drews, G. Complicated I of Rhodobacter capsulatus and its position in reverted electron transport. Arch. Microbiol. 169, 98–105 (1998).

    Article 

    Google Scholar
     

  • Gisriel, C. et al. Construction of a symmetric photosynthetic response center-photosystem. Science 357, 1021–1025 (2017).

    Article 

    Google Scholar
     

  • Chen, J. H. et al. Structure of the photosynthetic advanced from a inexperienced sulfur bacterium. Science 370, eabb6350 (2020).

    Article 

    Google Scholar
     

  • Leung, S. W., Baker, P. L. & Redding, Ok. E. Deletion of the cytochrome bc advanced from Heliobacterium modesticaldum leads to viable however non-phototrophic cells. Photosynth. Res. 148, 137–152 (2021).

    Article 

    Google Scholar
     

  • Kudryashev, M., Aktoudianaki, A., Dedoglou, D., Stahlberg, H. & Tsiotis, G. The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography. Biochim. Biophys. Acta Bioenerg. 1837, 1635–1642 (2014).

    Article 

    Google Scholar
     

  • Costas, A. M. G. et al. Ultrastructural evaluation and identification of envelope proteins of ‘Candidatus chloracidobacterium thermophilum’ chlorosomes. J. Bacteriol. 193, 6701–6711 (2011).

    Article 

    Google Scholar
     

  • Orf, G. S., Gisriel, C. & Redding, Ok. E. Evolution of photosynthetic response facilities: insights from the construction of the heliobacterial response heart. Photosynth. Res. 138, 11–37 (2018).

    Article 

    Google Scholar
     

  • Hou, N. et al. H2S biotreatment with sulfide-oxidizing heterotrophic micro organism. Biodegradation 29, 511–524 (2018).

    Article 

    Google Scholar
     

  • Kimble-Lengthy, L. Ok. & Madigan, M. T. Molecular proof that the capability for endosporulation is common amongst phototrophic heliobacteria. FEMS Microbiol. Lett. 199, 191–195 (2001).

    Article 

    Google Scholar
     

  • Grattieri, M., Rhodes, Z., Hickey, D. P., Beaver, Ok. & Minteer, S. D. Understanding biophotocurrent technology in photosynthetic purple micro organism. ACS Catal. 9, 867–873 (2019).

    Article 

    Google Scholar
     

  • Kawaichi, S. et al. Anodic and cathodic extracellular electron switch by the filamentous bacterium Ardenticatena maritima 110S. Entrance. Microbiol. 9, 68 (2018).

    Article 

    Google Scholar
     

  • Badalamenti, J. P., Torres, C. I. & Krajmalnik-Brown, R. Gentle-responsive present technology by phototrophically enriched anode biofilms dominated by inexperienced sulfur micro organism. Biotechnol. Bioeng. 110, 1020–1027 (2013).

    Article 

    Google Scholar
     

  • Mehta-Kolte, M. G. & Bond, D. R. Geothrix fermentans secretes two totally different redox-active compounds to make the most of electron acceptors throughout a variety of redox potentials. Appl. Environ. Microbiol. 78, 6987 (2012).

    Article 

    Google Scholar
     

  • Hasan, Ok. et al. Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing photo voltaic vitality. Adv. Power Mater. 5, 1501100 (2015).

    Article 

    Google Scholar
     

  • Laohavisit, A. et al. Enhancing plasma membrane NADPH oxidase exercise will increase present output by diatoms in biophotovoltaic units. Algal Res. 12, 91–98 (2015).

    Article 

    Google Scholar
     

  • Li, X., Liu, T., Wang, Ok. & Waite, T. D. Gentle-induced extracellular electron transport by the marine raphidophyte Chattonella marina. Environ. Sci. Technol. 49, 1392–1399 (2015).

    Article 

    Google Scholar
     

  • Saper, G. et al. Dwell cyanobacteria produce photocurrent and hydrogen utilizing each the respiratory and photosynthetic programs. Nat. Commun. 9, 2168(2018).

    Article 

    Google Scholar
     

  • Hatano, J. et al. NADPH manufacturing in darkish levels is essential for cyanobacterial photocurrent technology: a research utilizing mutants poor in oxidative pentose phosphate pathway. Photosynth. Res. 153, 113–120 (2022).

    Article 

    Google Scholar
     

  • Kusama, S. et al. Order-of-magnitude enhancement in photocurrent technology of Synechocystis sp. PCC 6803 by outer membrane deprivation. Nat. Commun. 13, 3067 (2022).

    Article 

    Google Scholar
     

  • Gupta, D. et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio 10, e02668-19 (2019).

    Article 

    Google Scholar
     

  • Manchon, C., Muniesa-Merino, F., Llorente, M. & Esteve-Núñez, A. Microbial photoelectrosynthesis: feeding purple phototrophic micro organism electrical energy to provide bacterial biomass. Microb. Biotechnol. 16, 569–578 (2022).

    Article 

    Google Scholar
     

  • Ha, P. T. et al. Syntrophic anaerobic photosynthesis through direct interspecies electron switch. Nat. Commun. 8, 13924 (2017).

    Article 

    Google Scholar
     

  • Dawiec-Liśniewska, A. et al. New tendencies in biotechnological functions of photosynthetic microorganisms. Biotechnol. Adv. 59, 107988 (2022).

    Article 

    Google Scholar
     

  • Ducat, D. C., Sachdeva, G. & Silver, P. A. Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc. Natl Acad. Sci. USA 108, 3941–3946 (2011).

    Article 

    Google Scholar
     

  • Liu, D., Liberton, M., Yu, J., Pakrasi, H. B. & Bhattacharyya-Pakrasi, M. Engineering nitrogen fixation exercise in an oxygenic phototroph. mBio 9, e01029-18 (2018).

    Article 

    Google Scholar
     

  • Li, T. et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen manufacturing. Nat. Commun. 11, 5448 (2020).

    Article 

    Google Scholar
     

  • Saar, Ok. L. et al. Enhancing energy density of biophotovoltaics by decoupling storage and energy supply. Nat. Power 3, 75–81 (2018).

    Article 

    Google Scholar
     

  • Thiel, Ok. et al. Redirecting photosynthetic electron flux within the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3. Microb. Cell Reality. 18, 189 (2019).

    Article 

    Google Scholar
     

  • Hitchcock, A. et al. Biosynthesis of chlorophyll a in a purple bacterial phototroph and meeting right into a plant chlorophyll-protein advanced. ACS Synth. Biol. 5, 948–954 (2016).

    Article 

    Google Scholar
     

  • Belsare, Ok. D. et al. Directed evolution of P450cin for mediated electron switch. Protein Eng. Des. Sel. 30, 119–127 (2017).

    Article 

    Google Scholar
     

  • Makita, H. & Hastings, G. Inverted-region electron switch as a mechanism for enhancing photosynthetic photo voltaic vitality conversion effectivity. Proc. Natl Acad. Sci. USA 114, 9267–9272 (2017).

    Article 

    Google Scholar
     

  • Fu, H.-Y. et al. Redesigning the QA binding website of photosystem II permits discount of exogenous quinones. Nat. Commun. 8, 15274 (2017).

    Article 

    Google Scholar
     

  • Bouzon, M. et al. Change in cofactor specificity of oxidoreductases by adaptive evolution of an Escherichia coli NADPH-auxotrophic pressure. mBio 12, e00329-21 (2021).

    Article 

    Google Scholar
     

  • Aliverti, A. & Zanetti, G. A 3-domain iron-sulfur flavoprotein obtained by means of gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves. Biochemistry 36, 14771–14777 (1997).

    Article 

    Google Scholar
     

  • Yacoby, I. et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc. Natl Acad. Sci. USA 108, 9396–9401 (2011).

    Article 

    Google Scholar
     

  • Appel, J., Hueren, V., Boehm, M. & Gutekunst, Ok. Cyanobacterial in vivo photo voltaic hydrogen manufacturing utilizing a photosystem I–hydrogenase (PsaD-HoxYH) fusion advanced. Nat. Power 5, 458–467 (2020).

    Article 

    Google Scholar
     

  • Kanygin, A. et al. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Power Environ. Sci. 13, 2903–2914 (2020).

    Article 

    Google Scholar
     

  • Lassen, L. M. et al. Anchoring a plant cytochrome P450 through PsaM to the thylakoids in Synechococcus sp. PCC 7002: proof for light-driven biosynthesis. PLoS One 9, e102184 (2014).

    Article 

    Google Scholar
     

  • Wang, P. et al. In vivo meeting of photosystem I-hydrogenase chimera for in vitro photoH2 manufacturing. Adv. Power Mater 13, 2203232 (2023).

    Article 

    Google Scholar
     

  • Ueki, T. et al. An Escherichia coli chassis for manufacturing of electrically conductive protein nanowires. ACS Synth. Biol. 9, 647–654 (2020).

    Article 

    Google Scholar
     

  • Zhu, H. et al. A miniaturized bionic ocean-battery mimicking the construction of marine microbial ecosystems. Nat. Commun. 13, 5608 (2022).

    Article 

    Google Scholar
     

  • Zhu, H. et al. Growth of a longevous two-species biophotovoltaics with constrained electron movement. Nat. Commun. 10, 4282 (2019).

    Article 

    Google Scholar
     

  • Yu, W. et al. Photo voltaic-powered multi-organism symbiont mimic system for past pure synthesis of polypeptides from CO2 and N2. Sci. Adv. 9, eadf6772 (2023).

    Article 

    Google Scholar
     

  • Hays, S. G., Yan, L. L. W., Silver, P. A. & Ducat, D. C. Artificial photosynthetic consortia outline interactions resulting in robustness and photoproduction. J. Biol. Eng. 11, 4 (2017).

    Article 

    Google Scholar
     

  • Zuñiga, C. et al. Artificial microbial communities of heterotrophs and phototrophs facilitate sustainable development. Nat. Commun. 11, 3803 (2020).

    Article 

    Google Scholar
     

  • McCarty, N. S. & Ledesma-Amaro, R. Artificial biology instruments to engineer microbial communities for biotechnology. Developments Biotechnol. 37, 181–197 (2019).

    Article 

    Google Scholar
     

  • Kazamia, E., Aldridge, D. C. & Smith, A. G. Artificial ecology — a manner ahead for sustainable algal biofuel manufacturing? J. Biotechnol. 162, 163–169 (2012).

    Article 

    Google Scholar
     

  • Nass, M. M. Ok. Uptake of remoted chloroplasts by mammalian cells. Science 165, 1128–1131 (1969).

    Article 

    Google Scholar
     

  • Cournoyer, J. E. et al. Engineering synthetic photosynthetic life-forms by means of endosymbiosis. Nat. Commun. 13, 2254 (2022).

    Article 

    Google Scholar
     

  • McCormick, A. J. et al. Hydrogen manufacturing by means of oxygenic photosynthesis utilizing the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Power Environ. Sci. 6, 2682–2690 (2013).

    Article 

    Google Scholar
     

  • Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. Excessive photo-electrochemical exercise of thylakoid-carbon nanotube composites for photosynthetic vitality conversion. Power Environ. Sci. 6, 1891–1900 (2013).

    Article 

    Google Scholar
     

  • Adachi, T., Kataoka, Ok., Kitazumi, Y., Shirai, O. & Kano, Ok. A bio-solar cell with thylakoid membranes and bilirubin oxidase. Chem. Lett. 48, 686–689 (2019).

    Article 

    Google Scholar
     

  • Lewis, C. M. et al. Electrochemically pushed photosynthetic electron transport in cyanobacteria missing photosystem II. J. Am. Chem. Soc. 144, 2933–2942 (2022).

    Article 

    Google Scholar
     

  • Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes improve present technology from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).

    Article 

    Google Scholar
     

  • Karthikeyan, C. et al. Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the inexperienced vitality technology of Chlorella vulgaris mediated biophotovoltaic cells. Environ. Prog. Maintain. Power 38, e13262 (2019).

    Article 

    Google Scholar
     

  • Aleksejeva, O., Nilsson, N., Genevskiy, V., Thulin, Ok. & Shleev, S. Twin-feature photobioanodes primarily based on nanoimprint lithography for photoelectric biosupercapacitors. J. Energy Sources 517, 230677 (2022).

    Article 

    Google Scholar
     

  • Ryu, D. et al. Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. Nanomaterials 8, 189 (2018).

    Article 

    Google Scholar
     

  • Fang, X. et al. Construction-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).

    Article 

    Google Scholar
     

  • Kim, Y. J. et al. 3D Printing of thylakoid-PEDOT:PSS composite electrode for bio-photoelectrochemical cells. ACS Appl. Power Mater. 6, 773–781 (2023).

    Article 

    Google Scholar
     

  • Mevers, E. et al. An elusive electron shuttle from a facultative anaerobe. eLife 8, e48054 (2019).

    Article 

    Google Scholar
     

  • Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron switch. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    Article 

    Google Scholar
     

  • Dietrich, L. E. P., Value-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. Ok. The phenazine pyocyanin is a terminal signalling issue within the quorum sensing community of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).

    Article 

    Google Scholar
     

  • Bunea, A. I. et al. Micropatterned carbon-on-quartz electrode chips for photocurrent technology from thylakoid membranes. ACS Appl. Power Mater. 1, 3313–3322 (2018).

    Article 

    Google Scholar
     

  • McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms on the earth of bioelectrochemical programs. Power Environ. Sci. 8, 1092–1109 (2015).

    Article 

    Google Scholar
     

  • Shlosberg, Y. et al. NADPH performs mediated electron switch in cyanobacterial-driven bio-photoelectrochemical cells. iScience 24, 101892 (2021).

    Article 

    Google Scholar
     

  • Baikie, T. Ok. et al. Photosynthesis re-wired on the pico-second timescale. Nature 615, 836–840 (2023).

    Article 

    Google Scholar
     

  • Sayegh, A. et al. Discovering tailored quinones for harvesting electrons from photosynthetic algae suspensions. ChemElectroChem 8, 2968–2978 (2021).

    Article 

    Google Scholar
     

  • Pochon, A. et al. Photochemical oxidation of water by 2-methyl-1,4-benzoquinone: proof in opposition to the formation of free hydroxyl radical. J. Phys. Chem. A 106, 2889–2894 (2002).

    Article 

    Google Scholar
     

  • Tentscher, P. R. et al. Poisonous results of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Res. 202, 117415 (2021).

    Article 

    Google Scholar
     

  • Weliwatte, N. S., Grattieri, M. & Minteer, S. D. Rational design of synthetic redox-mediating programs towards upgrading photobioelectrocatalysis. Photochem. Photobiol. Sci. 20, 1333–1356 (2021).

    Article 

    Google Scholar
     

  • Longatte, G., Rappaport, F., Wollman, F. A., Guille-Collignon, M. & Lemaître, F. Electrochemical harvesting of photosynthetic electrons from unicellular algae inhabitants on the preparative scale through the use of 2,6-dichlorobenzoquinone. Electrochim. Acta 236, 337–342 (2017).

    Article 

    Google Scholar
     

  • Gemünde, A., Lai, B., Pause, L., Krömer, J. & Holtmann, D. Redox mediators in microbial electrochemical programs. ChemElectroChem 9, e202200216 (2022).

    Article 

    Google Scholar
     

  • Ruff, A. Redox polymers in bioelectrochemistry: widespread playgrounds and novel ideas. Curr. Opin. Electrochem. 5, 66–73 (2017).

    Article 

    Google Scholar
     

  • Liu, L. & Choi, S. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip functions. Lab Chip 17, 3817–3825 (2017).

    Article 

    Google Scholar
     

  • Weliwatte, N. S., Grattieri, M., Simoska, O., Rhodes, Z. & Minteer, S. D. Unbranched hybrid conducting redox polymers for intact chloroplast-based photobioelectrocatalysis. Langmuir 37, 7821–7833 (2021).

    Article 

    Google Scholar
     

  • Tanaka, Ok. et al. Particular interplay between redox phospholipid polymers and plastoquinone in photosynthetic electron transport chain. ChemPhysChem 18, 878–881 (2017).

    Article 

    Google Scholar
     

  • Antonucci, A. et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity technology in dwelling photovoltaics. Nat. Nanotechnol. 17, 1111–1119 (2022).

    Article 

    Google Scholar
     

  • McCormick, A. J. et al. Photosynthetic biofilms in pure tradition harness photo voltaic vitality in a mediatorless bio-photovoltaic cell (BPV) system. Power Environ. Sci. 4, 4699–4709 (2011).

    Article 

    Google Scholar
     

  • Hong, H. et al. Enhanced interfacial electron switch between thylakoids and RuO2 nanosheets for photosynthetic vitality harvesting. Sci. Adv. 7, eabf2543 (2021).

    Article 

    Google Scholar
     

  • Kim, S. I. L., Kim, Y. J., Hong, H., Yun, J. & Ryu, W. Electrosprayed thylakoid-alginate movie on a micro-pillar electrode for scalable photosynthetic vitality harvesting. ACS Appl. Mater. Interfaces 12, 54683–54693 (2020).

    Article 

    Google Scholar
     

  • Sokol, Ok. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes utilizing redox polymers. Power Environ. Sci. 9, 3698–3709 (2016).

    Article 

    Google Scholar
     

  • Friebe, V. M., Barszcz, A. J., Jones, M. R. & Frese, R. N. Sustaining electron switch pathways extends biohybrid photoelectrode stability to years. Angew. Chem. Int. Ed. 61, e202201148 (2022).


    Google Scholar
     

  • Pinhassi, R. I. et al. Hybrid bio-photo-electro-chemical cells for photo voltaic water splitting. Nat. Commun. 7, 12552 (2016).

    Article 

    Google Scholar
     

  • Pankratova, G. et al. Supercapacitive photo-bioanodes and biosolar cells: a novel method for photo voltaic vitality harnessing. Adv. Power Mater. 7, 1602285 (2017).

    Article 

    Google Scholar
     

  • Liu, L. & Choi, S. A self-charging cyanobacterial supercapacitor. Biosens. Bioelectron. 140, 111354 (2019).

    Article 

    Google Scholar
     

  • Bombelli, P. et al. Floor morphology and floor vitality of anode supplies affect energy outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 14, 12221–12229 (2012).

    Article 

    Google Scholar
     

  • Sawa, M. et al. Electrical energy technology from digitally printed cyanobacteria. Nat. Commun. 8, 1327 (2017).

    Article 

    Google Scholar
     

  • Kracke, F., Vassilev, I. & Krömer, J. O. Microbial electron transport and vitality conservation — the muse for optimizing bioelectrochemical programs. Entrance. Microbiol. 6, 575 (2015).

    Article 

    Google Scholar
     

  • Silva, V. D., Carletto, J. S., Carasek, E., Stambuk, B. U. & Da Graça Nascimento, M. Uneven discount of (4S)-(+)-carvone catalyzed by baker’s yeast: a inexperienced methodology for monitoring the conversion primarily based on liquid–liquid–liquid microextraction with polypropylene hole fiber membranes. Course of. Biochem. 48, 1159–1165 (2013).

    Article 

    Google Scholar
     

  • Wang, F. et al. One-pot biocatalytic route from cycloalkanes to α,ω‐dicarboxylic acids by designed Escherichia coli consortia. Nat. Commun. 11, 5035 (2020).

    Article 

    Google Scholar
     

  • Böhmer, S. et al. Enzymatic oxyfunctionalization pushed by photosynthetic water-splitting within the cyanobacterium Synechocystis sp. PCC 6803. Catalysts 7, 240 (2017).

    Article 

    Google Scholar
     

  • Köninger, Ok. et al. Recombinant cyanobacteria for the uneven discount of C=C bonds fueled by the biocatalytic oxidation of water. Angew. Chem. Int. Ed. 55, 5582–5585 (2016).

    Article 

    Google Scholar
     

  • Erdem, E. et al. Photobiocatalytic oxyfunctionalization with excessive response charge utilizing a baeyer-villiger monooxygenase from Burkholderia xenovorans in metabolically engineered cyanobacteria. ACS Catal. 12, 66–72 (2022).

    Article 

    Google Scholar
     

  • Sengupta, A., Sunder, A. V., Sohoni, S. V. & Wangikar, P. P. The impact of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. J. Biotechnol. 289, 1–6 (2019).

    Article 

    Google Scholar
     

  • Büchsenschütz, H. C. et al. Stereoselective biotransformations of cyclic imines in recombinant cells of Synechocystis sp. PCC 6803. ChemCatChem 12, 726–730 (2020).

    Article 

    Google Scholar
     

  • Hoschek, A., Bühler, B. & Schmid, A. Stabilization and scale-up of photosynthesis-driven ω-hydroxylation of nonanoic acid methyl ester by two-liquid section whole-cell biocatalysis. Biotechnol. Bioeng. 116, 1887–1900 (2019).

    Article 

    Google Scholar
     

  • Jurkaš, V. et al. Expression and exercise of heterologous hydroxyisocaproate dehydrogenases in Synechocystis sp. PCC 6803 ΔhoxYH. Eng. Microbiol. 2, 100008 (2022).

    Article 

    Google Scholar
     

  • Hoschek, A. et al. Gentle-dependent and aeration-independent gram-scale hydroxylation of cyclohexane to cyclohexanol by CYP450 harboring Synechocystis sp. PCC 6803. Biotechnol. J. 14, 1800724 (2019).

    Article 

    Google Scholar
     

  • Assil-Companioni, L. et al. Engineering of NADPH provide boosts photosynthesis-driven biotransformations. ACS Catal. 10, 11864–11877 (2020).

    Article 

    Google Scholar
     

  • Berepiki, A., Gittins, J. R., Moore, C. M. & Bibby, T. S. Rational engineering of photosynthetic electron flux enhances light-powered cytochrome P450 exercise. Synth. Biol. 3, ysy009 (2018).

    Article 

    Google Scholar
     

  • Spasic, J., Oliveira, P., Pacheco, C., Kourist, R. & Tamagnini, P. Engineering cyanobacterial chassis for improved electron provide towards a heterologous ene-reductase. J. Biotechnol. 360, 152–159 (2022).

    Article 

    Google Scholar
     

  • Meng, H. et al. Over-expression of an electron transport protein OmcS supplies enough NADH for d-lactate manufacturing in cyanobacterium. Biotechnol. Biofuels 14, 109 (2021).

    Article 

    Google Scholar
     

  • Tóth, G. S. et al. Photosynthetically produced sucrose by immobilized Synechocystis sp. PCC 6803 drives biotransformation in E. coli. Biotechnol. Biofuels Bioprod. 15, 146 (2022).

    Article 

    Google Scholar
     

  • Li, C. et al. A extremely appropriate phototrophic neighborhood for carbon-negative biosynthesis. Angew. Chem. Int. Ed. 62, e202215013 (2023).

    Article 

    Google Scholar
     

  • Löwe, H. & Kremling, A. In-depth computational evaluation of pure and synthetic carbon fixation pathways.BioDesign Res. 2021, 9898316 (2021).


    Google Scholar
     

  • Gabrielyan, L., Sargsyan, H. & Trchounian, A. Novel properties of photofermentative biohydrogen manufacturing by purple micro organism Rhodobacter sphaeroides: results of protonophores and inhibitors of accountable enzymes. Microb. Cell Reality. 14, 131 (2015).

    Article 

    Google Scholar
     

  • Gosse, J. L. et al. Hydrogen manufacturing by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol. Prog. 23, 124–130 (2007).

    Article 

    Google Scholar
     

  • Wegelius, A., Land, H., Berggren, G. & Lindblad, P. Semisynthetic [FeFe]-hydrogenase with secure expression and H2 manufacturing capability in a photosynthetic microbe. Cell Rep. Phys. Sci. 2, 100376 (2021).

    Article 

    Google Scholar
     

  • Wegelius, A. et al. Technology of a practical, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Power Environ. Sci. 11, 3163–3167 (2018).

    Article 

    Google Scholar
     

  • Lupacchini, S. et al. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab. Eng. 68, 199–209 (2021).

    Article 

    Google Scholar
     

  • Ben-Zvi, O., Dafni, E., Feldman, Y. & Yacoby, I. Re-routing photosynthetic vitality for steady hydrogen manufacturing in vivo. Biotechnol. Biofuels 12, 266 (2019).

    Article 

    Google Scholar
     

  • Li, H. et al. Suppressing hydrogen peroxide technology to attain oxygen-insensitivity of a [NiFe] hydrogenase in redox lively movies. Nat. Commun. 11, 920 (2020).

    Article 

    Google Scholar
     

  • Xu, Z. et al. Algal cell bionics as a step in the direction of photosynthesis-independent hydrogen manufacturing. Nat. Commun. 14, 1872 (2023).

    Article 

    Google Scholar
     

  • Khetkorn, W., Baebprasert, W., Lindblad, P. & Incharoensakdi, A. Redirecting the electron movement in the direction of the nitrogenase and bidirectional Hox-hydrogenase through the use of particular inhibitors leads to enhanced H2 manufacturing within the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour. Technol. 118, 265–271 (2012).

    Article 

    Google Scholar
     

  • Li, Z. et al. Exogenous electrical energy flowing by means of cyanobacterial photosystem I drives CO2 valorization with excessive vitality effectivity. Power Environ. Sci. 14, 5480–5490 (2021).

    Article 

    Google Scholar
     

  • Dong, F. et al. An engineered, non-diazotrophic cyanobacterium and its software in bioelectrochemical nitrogen fixation. Cell Rep. Phys. Sci. 2, 100444 (2021).

    Article 

    Google Scholar
     

  • Perona-Vico, E., Feliu-Paradeda, L., Puig, S. & Bañeras, L. Micro organism coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis. Sci. Rep. 10, 19852 (2020).

    Article 

    Google Scholar
     

  • Bai, W., Ranaivoarisoa, T. O., Singh, R., Rengasamy, Ok. & Bose, A. n-Butanol manufacturing by Rhodopseudomonas palustris TIE-1. Commun. Biol. 4, 1257 (2021).

    Article 

    Google Scholar
     

  • Ranaivoarisoa, T. O., Singh, R., Rengasamy, Ok., Guzman, M. S. & Bose, A. In the direction of sustainable bioplastic manufacturing utilizing the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J. Ind. Microbiol. Biotechnol. 46, 1401–1417 (2019).

    Article 

    Google Scholar
     

  • Zhang, J. Z. et al. Competing cost switch pathways on the photosystem II-electrode interface. Nat. Chem. Biol. 12, 1046–1052 (2016).

    Article 

    Google Scholar
     

  • Caserta, G. et al. Engineering an [FeFe]-hydrogenase: do accent clusters affect O2 resistance and catalytic bias? J. Am. Chem. Soc. 140, 5516–5526 (2018).

    Article 

    Google Scholar
     

  • Adamson, H. et al. Retuning the catalytic bias and overpotential of a [NiFe]-hydrogenase through a single amino acid change on the electron entry/exit website. J. Am. Chem. Soc. 139, 10677–10686 (2017).

    Article 

    Google Scholar
     

  • Shapiro, D. M. et al. Protein nanowires with tunable performance and programmable self-assembly utilizing sequence-controlled synthesis. Nat. Commun. 13, 829 (2022).

    Article 

    Google Scholar
     

  • Bateson, P. et al. Electrochemical characterisation of bio-bottle-voltaic (BBV) programs operated with algae and constructed with recycled supplies. Biology 7, 26 (2018).

    Article 

    Google Scholar
     

  • Bozan, M., Schmid, A. & Bühler, Ok. Analysis of self-sustaining cyanobacterial biofilms for technical functions. Biofilm 4, 100073 (2022).

    Article 

    Google Scholar
     

  • Srikanth, S., Pavani, T., Sarma, P. N. & Venkata Mohan, S. Synergistic interplay of biocatalyst with bio-anode as a operate of electrode supplies. Int. J. Hydrog. Power 36, 2271–2280 (2011).

    Article 

    Google Scholar
     

  • Welter, E. S. et al. Figures of benefit for photocatalysis: comparability of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a semiconductor and a bio-photocatalyst for water splitting. Catalysts 11, 1415 (2021).

    Article 

    Google Scholar
     

  • Howe, C. J. & Bombelli, P. Is it practical to make use of microbial photosynthesis to provide electrical energy immediately? PLoS Biol. 21, e3001970 (2023).

    Article 

    Google Scholar
     

  • Sheppard, T. J., Specht, D. & Barstow, B. Higher restrict effectivity estimates for electromicrobial manufacturing of drop-in jet fuels. Bioelectrochemistry 154, 108506 (2023).

    Article 

    Google Scholar
     

  • Ehrler, B. et al. Photovoltaics reaching for the Shockley–Queisser restrict. ACS Power Lett. 5, 3029–3033 (2020).

    Article 

    Google Scholar
     

  • Tucci, M. et al. A storable mediatorless electrochemical biosensor for herbicide detection. Microorganisms 7, 630 (2019).

    Article 

    Google Scholar
     

  • Eidenberger, L., Kogelmann, B. & Steinkellner, H. Plant-based biopharmaceutical engineering. Nat. Rev. Bioeng. 1, 426–439 (2023).

    Article 

    Google Scholar
     

  • Jester, B. W. et al. Growth of spirulina for the manufacture and oral supply of protein therapeutics. Nat. Biotechnol. 40, 956–964 (2022).

    Article 

    Google Scholar
     

  • Dos Santos Fernandes de Araujo, R. in The European Fee’s Information Heart for Bioeconomy Vol. 12 (Publications Workplace of the European Union, 2019).

  • Rodero, M., del, R., Herrero-Lobo, R., Pérez, V. & Muñoz, R. Affect of operational situations on the efficiency of biogas bioconversion into ectoines in pilot bubble column bioreactors. Bioresour. Technol. 358, 127398 (2022).

    Article 

    Google Scholar
     

  • Hellingwerf, Ok. J., Veetil, V. P. & van der Woude, A. D. Erythritol Manufacturing in Cyanobacteria Patent no. US20190194671A1 (2015).

  • van der Woude, A. D. et al. Genetic engineering of Synechocystis PCC6803 for the photoautotrophic manufacturing of the sweetener erythritol. Microb. Cell Reality. 15, 60 (2016).

    Article 

    Google Scholar
     

  • Marques Lameirinhas, R. A., Torres, J. P. N. & de Melo Cunha, J. P. A photovoltaic expertise evaluate: historical past, fundamentals and functions. Energies 15, 1823 (2022).

    Article 

    Google Scholar
     

  • Lips, D., Schuurmans, J. M., Branco Dos Santos, F. & Hellingwerf, Ok. J. Some ways in the direction of ‘photo voltaic gasoline’: quantitative evaluation of probably the most promising methods and the principle challenges throughout scale-up. Power Environ. Sci. 11, 10–22 (2018).

    Article 

    Google Scholar
     

  • Pérez, A. A., Chen, Q., Hernández, H. P., Branco dos Santos, F. & Hellingwerf, Ok. J. On using oxygenic photosynthesis for the sustainable manufacturing of commodity chemical substances. Physiol. Plant. 166, 413–427 (2019).

    Article 

    Google Scholar
     

  • Kiran Kumar, V., Man mohan, Ok., Manangath, S. P. & Gajalakshmi, S. Modern pilot-scale constructed wetland-microbial gasoline cell system for enhanced wastewater therapy and bioelectricity manufacturing. Chem. Eng. J. 460, 141686 (2023).

    Article 

    Google Scholar
     

  • Wen, X. et al. Efficient cultivation of microalgae for biofuel manufacturing: a pilot-scale analysis of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels 9, 123 (2016).

    Article 

    Google Scholar
     

  • Heimann, Ok. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel manufacturing. Curr. Opin. Biotechnol. 38, 183–189 (2016).

    Article 

    Google Scholar
     

  • Liao, Q. et al. Simultaneous enhancement of Chlorella vulgaris development and lipid accumulation by means of the synergy impact between mild and nitrate in a planar waveguide flat-plate photobioreactor. Bioresour. Technol. 243, 528–538 (2017).

    Article 

    Google Scholar
     

  • Ng, S. Ok. Y., Abunasser, N., Danton, M. E., Perez, G. & Salley, S. O. Enclosed Photobioreactors with Adaptive Inside Illumination for the Cultivation of Algae Patent no. US20100028977A1 (2009).

  • Oey, M., Sawyer, A. L., Ross, I. L. & Hankamer, B. Challenges and alternatives for hydrogen manufacturing from microalgae. Plant Biotechnol. J. 14, 1487–1499 (2016).

    Article 

    Google Scholar
     

  • Engler, C. et al. A Golden Gate modular cloning toolbox for crops. ACS Synth. Biol. 3, 839–843 (2014).

    Article 

    Google Scholar
     

  • Crozet, P. et al. Start of a photosynthetic chassis: a MoClo toolkit enabling artificial biology within the microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 7, 2074–2086 (2018).

    Article 

    Google Scholar
     

  • Vasudevan, R. et al. CyanoGate: a modular cloning suite for engineering cyanobacteria primarily based on the plant MoClo syntax. Plant. Physiol. 180, 39–55 (2019).

    Article 

    Google Scholar
     

  • Immethun, C. M., Kathol, M., Changa, T. & Saha, R. Artificial biology instrument growth advances predictable gene expression within the metabolically versatile soil bacterium Rhodopseudomonas palustris. Entrance. Bioeng. Biotechnol. 10, 318 (2022).

    Article 

    Google Scholar
     

  • Baker, P. L. et al. A molecular biology instrument package for the phototrophic firmicute Heliobacterium modesticaldum. Appl. Environ. Microbiol. 85, e01287-19 (2019).

    Article 

    Google Scholar
     

  • Gisriel, C. J., Azai, C. & Cardona, T. Latest advances within the structural variety of response facilities. Photosynth. Res. 149, 329–343 (2021).

    Article 

    Google Scholar
     

  • Kopf, M. et al. Comparative evaluation of the first transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21, 527–539 (2014).

    Article 

    Google Scholar
     

  • Białek, R. et al. In situ spectroelectrochemical investigation of a biophotoelectrode primarily based on photoreaction facilities embedded in a redox hydrogel. Electrochim. Acta 330, 135190 (2020).

    Article 

    Google Scholar
     

  • Nawrocki, W. J., Jones, M. R., Frese, R. N., Croce, R. & Friebe, V. M. In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode efficiency. Joule 7, 529–544 (2023).

    Article 

    Google Scholar
     

  • Johnson, J. E. & Berry, J. A. The position of cytochrome b6f within the management of steady-state photosynthesis: a conceptual and quantitative mannequin. Photosynth. Res. 148, 101–136 (2021).

    Article 

    Google Scholar
     

  • Saadat, N. P. et al. Computational evaluation of different photosynthetic electron flows linked with oxidative stress. Entrance. Plant Sci. 12, 2285 (2021).

    Article 

    Google Scholar
     

  • Cengic, I., Cañadas, I. C., Minton, N. P. & Hudson, E. P. Inducible CRISPR/Cas9 permits for multiplexed and quickly segregated single-target genome enhancing in Synechocystis sp. PCC 6803. ACS Synth. Biol. 11, 3100–3113 (2022).

    Article 

    Google Scholar
     

  • Brophy, J. A. N. & Voigt, C. A. Rules of genetic circuit design. Nat. Strategies 11, 508–520 (2014).

    Article 

    Google Scholar
     

  • Sokol, Ok. P. et al. Photoreduction of CO2 with a formate dehydrogenase pushed by photosystem II utilizing a semi-artificial Z-scheme structure. J. Am. Chem. Soc. 140, 16418–16422 (2018).

    Article 

    Google Scholar
     

  • Lawrence, J. M. et al. Artificial biology and bioelectrochemical instruments for electrogenetic system engineering. Sci. Adv. 8, 5091 (2022).

    Article 

    Google Scholar
     

  • Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019).

    Article 

    Google Scholar
     

  • Satanowski, A. et al. Awakening a latent carbon fixation cycle in Escherichia coli. Nat. Commun. 11, 5812 (2020).

    Article 

    Google Scholar
     

  • Cohen-Ofri, I. et al. Zinc-bacteriochlorophyllide dimers in de novo designed four-helix bundle proteins. A mannequin system for pure mild vitality harvesting and dissipation. J. Am. Chem. Soc. 133, 9526–9535 (2011).

    Article 

    Google Scholar
     

  • Lishchuk, A. et al. An artificial organic quantum optical system. Nanoscale 10, 13064–13073 (2018).

    Article 

    Google Scholar
     

  • Mancini, J. A. et al. De novo artificial biliprotein design, meeting and excitation vitality switch. J. R. Soc. Interface 15, 20180021 (2018).

    Article 

    Google Scholar
     

  • Kodali, G. et al. Design and engineering of water-soluble light-harvesting protein maquettes. Chem. Sci. 8, 316–324 (2016).

    Article 

    Google Scholar
     

  • Ennist, N. M. et al. De novo protein design of photochemical response facilities. Nat. Commun. 13, 4937 (2022).

    Article 

    Google Scholar
     

  • Atkinson, J. T. et al. Metalloprotein switches that show chemical-dependent electron switch in cells. Nat. Chem. Biol. 15, 189–195 (2019).

    Article 

    Google Scholar
     

  • Hardy, B. J. et al. Mobile manufacturing of a de novo membrane cytochrome. Biophys. Comput. Biol. 120, e2300137120 (2023).


    Google Scholar
     

  • Yu, Ok. et al. Photosynthesis-assisted transforming of three-dimensional printed buildings. Proc. Natl Acad. Sci. USA 118, e2016524118 (2021).

    Article 

    Google Scholar
     

  • Kristensen, S. B., van Mourik, T., Pedersen, T. B., Sørensen, J. L. & Muff, J. Simulation of electrochemical properties of naturally occurring quinones. Sci. Rep. 10, 13571 (2020).

    Article 

    Google Scholar
     

  • Zajdel, T. J. et al. PEDOT:PSS-based multilayer bacterial-composite movies for bioelectronics. Sci. Rep. 8, 15293 (2018).

    Article 

    Google Scholar
     

  • Qi, R. et al. In situ synthesis of photoactive polymers on a dwelling cell floor through bio-palladium catalysis for modulating organic capabilities. Angew. Chem. Int. Ed. 60, 5759–5765 (2021).

    Article 

    Google Scholar
     

  • Yu, Y. Y. et al. Single cell electron collectors for extremely environment friendly wiring-up digital abiotic/biotic interfaces. Nat. Commun. 11, 4087 (2020).

    Article 

    Google Scholar
     

  • Ort, D. R. et al. Redesigning photosynthesis to sustainably meet world meals and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    Article 

    Google Scholar
     

  • Lea-Smith, D. J. et al. Phycobilisome-deficient strains of Synechocystis sp. PCC 6803 have decreased dimension and require carbon-limiting situations to exhibit enhanced productiveness. Plant Physiol. 165, 705–714 (2014).

    Article 

    Google Scholar
     

  • Friedland, N. et al. Nice-tuning the photosynthetic mild harvesting equipment for improved photosynthetic effectivity and biomass yield. Sci. Rep. 9, 13028 (2019).

    Article 

    Google Scholar
     

  • Kromdijk, J. et al. Enhancing photosynthesis and crop productiveness by accelerating restoration from photoprotection. Science 354, 857–861 (2016).

    Article 

    Google Scholar
     

  • Ermakova, M. et al. Set up of C4 photosynthetic pathway enzymes in rice utilizing a single assemble. Plant Biotechnol. J. 19, 575–588 (2021).

    Article 

    Google Scholar
     

  • Roell, M. S. et al. An artificial C4 shuttle through the β-hydroxyaspartate cycle in C3 crops. Proc. Natl Acad. Sci. USA 118, e2022307118 (2021).

    Article 

    Google Scholar
     

  • Hitchcock, A. et al. Redesigning the photosynthetic mild reactions to boost photosynthesis — the PhotoRedesign consortium. Plant J. 109, 23–34 (2022).

    Article 

    Google Scholar
     

  • Liu, J., Friebe, V. M., Frese, R. N. & Jones, M. R. Polychromatic photo voltaic vitality conversion in pigment-protein chimeras that unite the 2 kingdoms of (bacterio)chlorophyll-based photosynthesis. Nat. Commun. 11, 1542 (2020).

    Article 

    Google Scholar
     

  • Liu, H. et al. Boosting cyanobacteria development by fivefold with aggregation-induced emission luminogens: towards the event of a biofactory. ACS Maintain. Chem. Eng. 9, 15258–15266 (2021).

    Article 

    Google Scholar
     

  • Search engine marketing, Y. H., Lee, Y., Jeon, D. Y. & Han, J. I. Enhancing the sunshine utilization effectivity of microalgae utilizing natural dyes. Bioresour. Technol. 181, 355–359 (2015).

    Article 

    Google Scholar
     

  • Yoneda, Y. et al. Ultrafast photodynamics and quantitative analysis of biohybrid photosynthetic antenna and response heart complexes producing photocurrent. J. Phys. Chem. C 124, 8605–8615 (2020).

    Article 

    Google Scholar
     

  • Yoneda, Y. et al. Extension of light-harvesting means of photosynthetic light-harvesting advanced 2 (LH2) by means of ultrafast vitality switch from covalently connected synthetic chromophores. J. Am. Chem. Soc. 137, 13121–13129 (2015).

    Article 

    Google Scholar
     

  • Liu, J. et al. Mechanisms of self-assembly and vitality harvesting in tuneable conjugates of quantum dots and engineered photovoltaic proteins. Small 15, 1804267 (2019).

    Article 

    Google Scholar
     

  • Amoruso, G. et al. Excessive-efficiency excitation vitality switch in biohybrid quantum dot-bacterial response heart nanoconjugates. J. Phys. Chem. Lett. 12, 5448–5455 (2021).

    Article 

    Google Scholar
     

  • Nabiev, I. et al. Fluorescent quantum dots as synthetic antennas for enhanced mild harvesting and vitality switch to photosynthetic response facilities. Angew. Chem. Int. Ed. 49, 7217–7221 (2010).

    Article 

    Google Scholar
     

  • Li, Z. et al. Biomimetic electron transport through multiredox shuttles from photosystem II to a photoelectrochemical cell for photo voltaic water splitting. Power Environ. Sci. 10, 765–771 (2017).

    Article 

    Google Scholar
     

  • Sokol, Ok. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Power 3, 944–951 (2018).

    Article 

    Google Scholar
     

  • Martín, S. S., Rivero, M. J. & Ortiz, I. Unravelling the mechanisms that drive the efficiency of photocatalytic hydrogen manufacturing. Catalysts 10, 901 (2020).

    Article 

    Google Scholar
     

  • Hu, Q. et al. Ultrafast electron switch in Au-cyanobacteria hybrid for photo voltaic to chemical manufacturing. ACS Power Lett. 20, 677–684 (2022).


    Google Scholar
     

  • Croce, R., van Grondelle, R., van Amerongen, H. & van Stokkum, I. Gentle Harvesting in Photosynthesis (CRC Press, 2018).

  • Nicholls, D. G. & Ferguson, S. Bioenergetics: Fourth Version (Elsevier, 2013).

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here