[ad_1]
Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Wiley, 2021).
Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1857, 247–255 (2016).
Blankenship, R. E. et al. Evaluating photosynthetic and photovoltaic efficiencies and recognizing the potential for enchancment. Science 332, 805–809 (2011).
Nayak, P. Ok., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic photo voltaic cell applied sciences: analysing the state-of-the-art. Nat. Rev. Mater. 4, 269–285 (2019).
Kato, N. et al. Photo voltaic gasoline manufacturing from CO2 utilizing a 1 m-square-sized reactor with a solar-to-formate conversion effectivity of 10.5%. ACS Maintain. Chem. Eng. 9, 16031–16037 (2021).
Andrei, V. et al. Floating perovskite-BiVO4 units for scalable photo voltaic gasoline manufacturing. Nature 608, 518–522 (2022).
Wey, L. T. et al. The event of biophotovoltaic programs for energy technology and organic evaluation. ChemElectroChem 6, 5375–5386 (2019).
Kornienko, N., Zhang, J. Z., Sakimoto, Ok. Ok., Yang, P. & Reisner, E. Interfacing nature’s catalytic equipment with artificial supplies for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).
Dong, F., Lee, Y. S., Gaffney, E. M., Liou, W. & Minteer, S. D. Engineering cyanobacterium with transmembrane electron switch means for bioelectrochemical nitrogen fixation. ACS Catal. 11, 13169–13179 (2021).
Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).
Teodor, A. H. & Bruce, B. D. Placing photosystem I to work: actually inexperienced vitality. Developments Biotechnol. 38, 1329–1342 (2020).
Schmermund, L. et al. Picture-biocatalysis: biotransformations within the presence of sunshine. ACS Catal. 9, 4115–4144 (2019).
Utschig, L. M., Soltau, S. R., Mulfort, Ok. L., Niklas, J. & Poluektov, O. G. Z-scheme photo voltaic water splitting through self-assembly of photosystem I-catalyst hybrids in thylakoid membranes. Chem. Sci. 9, 8504–8512 (2018).
Rabaey, Ok. & Rozendal, R. A. Microbial electrosynthesis — revisiting {the electrical} route for microbial manufacturing. Nat. Rev. Microbiol. 8, 706–716 (2010).
Chen, X. et al. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022).
Jurkaš, V. et al. Transmembrane shuttling of photosynthetically produced electrons to propel extracellular biocatalytic redox reactions in a modular trend. Angew. Chem. Int. Ed. 61, e202207971 (2022).
Miller, T. E. et al. Gentle-powered CO2 fixation in a chloroplast mimic with pure and artificial components. Science 368, 649–654 (2020).
Bradley, R. W., Bombelli, P., Lea-Smith, D. J. & Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 present elevated electrogenic exercise in organic photo-voltaic programs. Phys. Chem. Chem. Phys. 15, 13611–13618 (2013).
Jokel, M., Nagy, V., Tóth, S. Z., Kosourov, S. & Allahverdiyeva, Y. Elimination of the flavodiiron electron sink facilitates long-term H2 photoproduction in inexperienced algae. Biotechnol. Biofuels 12, 280 (2019).
Mellor, S. B. et al. Fusion of ferredoxin and cytochrome P450 permits direct light-driven biosynthesis. ACS Chem. Biol. 11, 1862–1869 (2016).
Wooden, P. M. & Bendall, D. S. The discount of plastocyanin by plastoquinol-1 within the presence of chloroplasts. Eur. J. Biochem. 61, 337–344 (1976).
Grattieri, M. Purple micro organism photo-bioelectrochemistry: enthralling challenges and alternatives. Photochem. Photobiol. Sci. 19, 424–435 (2020).
Clifford, E. R. et al. Phenazines as mannequin low-midpoint potential electron shuttles for photosynthetic bioelectrochemical programs. Chem. Sci. 12, 3328–3338 (2021).
Schuergers, N., Werlang, C., Ajo-Franklin, C. M. & Boghossian, A. A. An artificial biology method to engineering dwelling photovoltaics. Power Environ. Sci. 10, 1102–1115 (2017).
Zerfaß, C., Chen, J. & Soyer, O. S. Engineering microbial communities utilizing thermodynamic ideas and electrical interfaces. Curr. Opin. Biotechnol. 50, 121–127 (2018).
Huang, Q., Jiang, F., Wang, L. & Yang, C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3, 318–329 (2017).
Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Present information and up to date advances in understanding metabolism of the mannequin cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, 20193325 (2020).
Anam, M., Gomes, H. I., Rivers, G., Gomes, R. L. & Wildman, R. Analysis of photoanode supplies utilized in biophotovoltaic programs for renewable vitality technology. Maintain. Power Fuels 5, 4209–4232 (2021).
Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).
Zhou, X. et al. Conducting polymers–thylakoid hybrid supplies for water oxidation and photoelectric conversion. Adv. Electron. Mater. 5, 1800789 (2019).
Hasan, Ok. et al. Picture-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).
Longatte, G. et al. Investigation of photocurrents ensuing from a dwelling unicellular algae suspension with quinones over time. Chem. Sci. 9, 8271–8281 (2018).
Hasan, Ok. et al. Photoelectrochemical communication between thylakoid membranes and gold electrodes by means of totally different quinone derivatives. ChemElectroChem 1, 131–139 (2014).
Kuruvinashetti, Ok., Pakkiriswami, S. & Packirisamy, M. Gold nanoparticle interplay in algae enhancing quantum effectivity and energy technology in microphotosynthetic energy cells. Adv. Power Maintain. Res. 3, 2100135 (2022).
Krieger-Liszkay, A. & Shimakawa, G. Regulation of the technology of reactive oxygen species throughout photosynthetic electron transport. Biochem. Soc. Trans. 50, 1025–1034 (2022).
Bombelli, P. et al. Powering a microprocessor by photosynthesis. Power Environ. Sci. 15, 2529–2536 (2022).
Wey, L. T. et al. A biophotoelectrochemical method to unravelling the position of cyanobacterial cell buildings in exoelectrogenesis. Electrochim. Acta 395, 139214 (2021).
Altamura, E. et al. Chromatophores effectively promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment synthetic cells. Proc. Natl Acad. Sci. USA 118, e2012170118 (2021).
Pinhassi, R. I. et al. Photosynthetic membranes of Synechocystis or crops convert daylight to photocurrent by means of totally different pathways resulting from totally different architectures. PLoS One 10, e0122616 (2015).
Hasan, Ok. et al. Photobioelectrocatalysis of intact chloroplasts for photo voltaic vitality conversion. ACS Catal. 7, 2257–2265 (2017).
Zhang, H., Catania, R. & Jeuken, L. J. C. Membrane protein modified electrodes in bioelectrocatalysis. Catalysts 10, 13290–13298 (2020).
Rasmussen, M. & Minteer, S. D. Investigating the mechanism of thylakoid direct electron switch for photocurrent technology. Electrochim. Acta 126, 68–73 (2014).
Bombelli, P. et al. Quantitative evaluation of the elements limiting solar energy transduction by Synechocystis sp. PCC 6803 in organic photovoltaic units. Power Environ. Sci. 4, 4690–4698 (2011).
Pankratov, D., Pankratova, G. & Gorton, L. Thylakoid membrane-based photobioelectrochemical programs: achievements, limitations, and views. Curr. Opin. Electrochem. 19, 49–54 (2020).
Croce, R. & Van Amerongen, H. Pure methods for photosynthetic mild harvesting. Nat. Chem. Biol. 10, 492–501 (2014).
Oliver, T., Sánchez-Baracaldo, P., Larkum, A. W., Rutherford, A. W. & Cardona, T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochim. Biophys. Acta Bioenerg. 1862, 148400 (2021).
Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).
Joliot, P. & Johnson, G. N. Regulation of cyclic and linear electron movement in larger crops. Proc. Natl Acad. Sci. USA 108, 13317–13322 (2011).
Miller, N. T., Vaughn, M. D. & Burnap, R. L. Electron movement by means of NDH-1 complexes is the foremost driver of cyclic electron flow-dependent proton pumping in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1862, 148354 (2021).
Puggioni, V., Tempel, S. & Latifi, A. Distribution of hydrogenases in cyanobacteria: a phylum-wide genomic survey. Entrance. Genet. 7, 223 (2016).
Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological functions of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).
Nürnberg, D. J. et al. Photochemistry past the purple restrict in chlorophyll f-containing photosystems. Science 360, 1210–1213 (2018).
Wichmann, J. et al. Engineering biocatalytic photo voltaic gasoline manufacturing: the PHOTOFUEL consortium. Developments Biotechnol. 39, 323–327 (2021).
Jones, M. R. The petite purple photosynthetic powerpack. Biochem. Soc. Trans. 37, 400–407 (2009).
Xin, Y. et al. Cryo-EM construction of the RC-LH core advanced from an early branching photosynthetic prokaryote. Nat. Commun. 9, 1568 (2018).
Swainsbury, D. J. Ok. et al. Buildings of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Sci. Adv. 7, eabe2631 (2021).
Oh-oka, H., Harada, J. & Azai, C. in Encyclopedia of Organic Chemistry: Third Version Vol. 2 333–351 (Elsevier, 2021).
George, D. M., Vincent, A. S. & Mackey, H. R. An summary of anoxygenic phototrophic micro organism and their functions in environmental biotechnology for sustainable useful resource restoration. Biotechnol. Rep. 28, e00563 (2020).
LaSarre, B. et al. Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in a number of genera of purple nonsulfur micro organism. mBio 9, e00780-18 (2018).
Gaisin, V. A., Kooger, R., Grouzdev, D. S., Gorlenko, V. M. & Pilhofer, M. Cryo-electron tomography reveals the advanced ultrastructural group of multicellular filamentous chloroflexota (Chloroflexi) micro organism. Entrance. Microbiol. 11, 1373 (2020).
Capson-Tojo, G. et al. Purple phototrophic micro organism for useful resource restoration: challenges and alternatives. Biotechnol. Adv. 43, 107567 (2020).
Tang, Ok. H., Tang, Y. J. & Blankenship, R. E. Carbon metabolic pathways in phototrophic micro organism and their broader evolutionary implications. Entrance. Microbiol. 2, 165 (2011).
Herter, S. M., Kortlüke, C. M. & Drews, G. Complicated I of Rhodobacter capsulatus and its position in reverted electron transport. Arch. Microbiol. 169, 98–105 (1998).
Gisriel, C. et al. Construction of a symmetric photosynthetic response center-photosystem. Science 357, 1021–1025 (2017).
Chen, J. H. et al. Structure of the photosynthetic advanced from a inexperienced sulfur bacterium. Science 370, eabb6350 (2020).
Leung, S. W., Baker, P. L. & Redding, Ok. E. Deletion of the cytochrome bc advanced from Heliobacterium modesticaldum leads to viable however non-phototrophic cells. Photosynth. Res. 148, 137–152 (2021).
Kudryashev, M., Aktoudianaki, A., Dedoglou, D., Stahlberg, H. & Tsiotis, G. The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography. Biochim. Biophys. Acta Bioenerg. 1837, 1635–1642 (2014).
Costas, A. M. G. et al. Ultrastructural evaluation and identification of envelope proteins of ‘Candidatus chloracidobacterium thermophilum’ chlorosomes. J. Bacteriol. 193, 6701–6711 (2011).
Orf, G. S., Gisriel, C. & Redding, Ok. E. Evolution of photosynthetic response facilities: insights from the construction of the heliobacterial response heart. Photosynth. Res. 138, 11–37 (2018).
Hou, N. et al. H2S biotreatment with sulfide-oxidizing heterotrophic micro organism. Biodegradation 29, 511–524 (2018).
Kimble-Lengthy, L. Ok. & Madigan, M. T. Molecular proof that the capability for endosporulation is common amongst phototrophic heliobacteria. FEMS Microbiol. Lett. 199, 191–195 (2001).
Grattieri, M., Rhodes, Z., Hickey, D. P., Beaver, Ok. & Minteer, S. D. Understanding biophotocurrent technology in photosynthetic purple micro organism. ACS Catal. 9, 867–873 (2019).
Kawaichi, S. et al. Anodic and cathodic extracellular electron switch by the filamentous bacterium Ardenticatena maritima 110S. Entrance. Microbiol. 9, 68 (2018).
Badalamenti, J. P., Torres, C. I. & Krajmalnik-Brown, R. Gentle-responsive present technology by phototrophically enriched anode biofilms dominated by inexperienced sulfur micro organism. Biotechnol. Bioeng. 110, 1020–1027 (2013).
Mehta-Kolte, M. G. & Bond, D. R. Geothrix fermentans secretes two totally different redox-active compounds to make the most of electron acceptors throughout a variety of redox potentials. Appl. Environ. Microbiol. 78, 6987 (2012).
Hasan, Ok. et al. Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing photo voltaic vitality. Adv. Power Mater. 5, 1501100 (2015).
Laohavisit, A. et al. Enhancing plasma membrane NADPH oxidase exercise will increase present output by diatoms in biophotovoltaic units. Algal Res. 12, 91–98 (2015).
Li, X., Liu, T., Wang, Ok. & Waite, T. D. Gentle-induced extracellular electron transport by the marine raphidophyte Chattonella marina. Environ. Sci. Technol. 49, 1392–1399 (2015).
Saper, G. et al. Dwell cyanobacteria produce photocurrent and hydrogen utilizing each the respiratory and photosynthetic programs. Nat. Commun. 9, 2168(2018).
Hatano, J. et al. NADPH manufacturing in darkish levels is essential for cyanobacterial photocurrent technology: a research utilizing mutants poor in oxidative pentose phosphate pathway. Photosynth. Res. 153, 113–120 (2022).
Kusama, S. et al. Order-of-magnitude enhancement in photocurrent technology of Synechocystis sp. PCC 6803 by outer membrane deprivation. Nat. Commun. 13, 3067 (2022).
Gupta, D. et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio 10, e02668-19 (2019).
Manchon, C., Muniesa-Merino, F., Llorente, M. & Esteve-Núñez, A. Microbial photoelectrosynthesis: feeding purple phototrophic micro organism electrical energy to provide bacterial biomass. Microb. Biotechnol. 16, 569–578 (2022).
Ha, P. T. et al. Syntrophic anaerobic photosynthesis through direct interspecies electron switch. Nat. Commun. 8, 13924 (2017).
Dawiec-Liśniewska, A. et al. New tendencies in biotechnological functions of photosynthetic microorganisms. Biotechnol. Adv. 59, 107988 (2022).
Ducat, D. C., Sachdeva, G. & Silver, P. A. Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc. Natl Acad. Sci. USA 108, 3941–3946 (2011).
Liu, D., Liberton, M., Yu, J., Pakrasi, H. B. & Bhattacharyya-Pakrasi, M. Engineering nitrogen fixation exercise in an oxygenic phototroph. mBio 9, e01029-18 (2018).
Li, T. et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen manufacturing. Nat. Commun. 11, 5448 (2020).
Saar, Ok. L. et al. Enhancing energy density of biophotovoltaics by decoupling storage and energy supply. Nat. Power 3, 75–81 (2018).
Thiel, Ok. et al. Redirecting photosynthetic electron flux within the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3. Microb. Cell Reality. 18, 189 (2019).
Hitchcock, A. et al. Biosynthesis of chlorophyll a in a purple bacterial phototroph and meeting right into a plant chlorophyll-protein advanced. ACS Synth. Biol. 5, 948–954 (2016).
Belsare, Ok. D. et al. Directed evolution of P450cin for mediated electron switch. Protein Eng. Des. Sel. 30, 119–127 (2017).
Makita, H. & Hastings, G. Inverted-region electron switch as a mechanism for enhancing photosynthetic photo voltaic vitality conversion effectivity. Proc. Natl Acad. Sci. USA 114, 9267–9272 (2017).
Fu, H.-Y. et al. Redesigning the QA binding website of photosystem II permits discount of exogenous quinones. Nat. Commun. 8, 15274 (2017).
Bouzon, M. et al. Change in cofactor specificity of oxidoreductases by adaptive evolution of an Escherichia coli NADPH-auxotrophic pressure. mBio 12, e00329-21 (2021).
Aliverti, A. & Zanetti, G. A 3-domain iron-sulfur flavoprotein obtained by means of gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves. Biochemistry 36, 14771–14777 (1997).
Yacoby, I. et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc. Natl Acad. Sci. USA 108, 9396–9401 (2011).
Appel, J., Hueren, V., Boehm, M. & Gutekunst, Ok. Cyanobacterial in vivo photo voltaic hydrogen manufacturing utilizing a photosystem I–hydrogenase (PsaD-HoxYH) fusion advanced. Nat. Power 5, 458–467 (2020).
Kanygin, A. et al. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Power Environ. Sci. 13, 2903–2914 (2020).
Lassen, L. M. et al. Anchoring a plant cytochrome P450 through PsaM to the thylakoids in Synechococcus sp. PCC 7002: proof for light-driven biosynthesis. PLoS One 9, e102184 (2014).
Wang, P. et al. In vivo meeting of photosystem I-hydrogenase chimera for in vitro photoH2 manufacturing. Adv. Power Mater 13, 2203232 (2023).
Ueki, T. et al. An Escherichia coli chassis for manufacturing of electrically conductive protein nanowires. ACS Synth. Biol. 9, 647–654 (2020).
Zhu, H. et al. A miniaturized bionic ocean-battery mimicking the construction of marine microbial ecosystems. Nat. Commun. 13, 5608 (2022).
Zhu, H. et al. Growth of a longevous two-species biophotovoltaics with constrained electron movement. Nat. Commun. 10, 4282 (2019).
Yu, W. et al. Photo voltaic-powered multi-organism symbiont mimic system for past pure synthesis of polypeptides from CO2 and N2. Sci. Adv. 9, eadf6772 (2023).
Hays, S. G., Yan, L. L. W., Silver, P. A. & Ducat, D. C. Artificial photosynthetic consortia outline interactions resulting in robustness and photoproduction. J. Biol. Eng. 11, 4 (2017).
Zuñiga, C. et al. Artificial microbial communities of heterotrophs and phototrophs facilitate sustainable development. Nat. Commun. 11, 3803 (2020).
McCarty, N. S. & Ledesma-Amaro, R. Artificial biology instruments to engineer microbial communities for biotechnology. Developments Biotechnol. 37, 181–197 (2019).
Kazamia, E., Aldridge, D. C. & Smith, A. G. Artificial ecology — a manner ahead for sustainable algal biofuel manufacturing? J. Biotechnol. 162, 163–169 (2012).
Nass, M. M. Ok. Uptake of remoted chloroplasts by mammalian cells. Science 165, 1128–1131 (1969).
Cournoyer, J. E. et al. Engineering synthetic photosynthetic life-forms by means of endosymbiosis. Nat. Commun. 13, 2254 (2022).
McCormick, A. J. et al. Hydrogen manufacturing by means of oxygenic photosynthesis utilizing the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Power Environ. Sci. 6, 2682–2690 (2013).
Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. Excessive photo-electrochemical exercise of thylakoid-carbon nanotube composites for photosynthetic vitality conversion. Power Environ. Sci. 6, 1891–1900 (2013).
Adachi, T., Kataoka, Ok., Kitazumi, Y., Shirai, O. & Kano, Ok. A bio-solar cell with thylakoid membranes and bilirubin oxidase. Chem. Lett. 48, 686–689 (2019).
Lewis, C. M. et al. Electrochemically pushed photosynthetic electron transport in cyanobacteria missing photosystem II. J. Am. Chem. Soc. 144, 2933–2942 (2022).
Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes improve present technology from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).
Karthikeyan, C. et al. Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the inexperienced vitality technology of Chlorella vulgaris mediated biophotovoltaic cells. Environ. Prog. Maintain. Power 38, e13262 (2019).
Aleksejeva, O., Nilsson, N., Genevskiy, V., Thulin, Ok. & Shleev, S. Twin-feature photobioanodes primarily based on nanoimprint lithography for photoelectric biosupercapacitors. J. Energy Sources 517, 230677 (2022).
Ryu, D. et al. Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. Nanomaterials 8, 189 (2018).
Fang, X. et al. Construction-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).
Kim, Y. J. et al. 3D Printing of thylakoid-PEDOT:PSS composite electrode for bio-photoelectrochemical cells. ACS Appl. Power Mater. 6, 773–781 (2023).
Mevers, E. et al. An elusive electron shuttle from a facultative anaerobe. eLife 8, e48054 (2019).
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron switch. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).
Dietrich, L. E. P., Value-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. Ok. The phenazine pyocyanin is a terminal signalling issue within the quorum sensing community of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).
Bunea, A. I. et al. Micropatterned carbon-on-quartz electrode chips for photocurrent technology from thylakoid membranes. ACS Appl. Power Mater. 1, 3313–3322 (2018).
McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms on the earth of bioelectrochemical programs. Power Environ. Sci. 8, 1092–1109 (2015).
Shlosberg, Y. et al. NADPH performs mediated electron switch in cyanobacterial-driven bio-photoelectrochemical cells. iScience 24, 101892 (2021).
Baikie, T. Ok. et al. Photosynthesis re-wired on the pico-second timescale. Nature 615, 836–840 (2023).
Sayegh, A. et al. Discovering tailored quinones for harvesting electrons from photosynthetic algae suspensions. ChemElectroChem 8, 2968–2978 (2021).
Pochon, A. et al. Photochemical oxidation of water by 2-methyl-1,4-benzoquinone: proof in opposition to the formation of free hydroxyl radical. J. Phys. Chem. A 106, 2889–2894 (2002).
Tentscher, P. R. et al. Poisonous results of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Res. 202, 117415 (2021).
Weliwatte, N. S., Grattieri, M. & Minteer, S. D. Rational design of synthetic redox-mediating programs towards upgrading photobioelectrocatalysis. Photochem. Photobiol. Sci. 20, 1333–1356 (2021).
Longatte, G., Rappaport, F., Wollman, F. A., Guille-Collignon, M. & Lemaître, F. Electrochemical harvesting of photosynthetic electrons from unicellular algae inhabitants on the preparative scale through the use of 2,6-dichlorobenzoquinone. Electrochim. Acta 236, 337–342 (2017).
Gemünde, A., Lai, B., Pause, L., Krömer, J. & Holtmann, D. Redox mediators in microbial electrochemical programs. ChemElectroChem 9, e202200216 (2022).
Ruff, A. Redox polymers in bioelectrochemistry: widespread playgrounds and novel ideas. Curr. Opin. Electrochem. 5, 66–73 (2017).
Liu, L. & Choi, S. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip functions. Lab Chip 17, 3817–3825 (2017).
Weliwatte, N. S., Grattieri, M., Simoska, O., Rhodes, Z. & Minteer, S. D. Unbranched hybrid conducting redox polymers for intact chloroplast-based photobioelectrocatalysis. Langmuir 37, 7821–7833 (2021).
Tanaka, Ok. et al. Particular interplay between redox phospholipid polymers and plastoquinone in photosynthetic electron transport chain. ChemPhysChem 18, 878–881 (2017).
Antonucci, A. et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity technology in dwelling photovoltaics. Nat. Nanotechnol. 17, 1111–1119 (2022).
McCormick, A. J. et al. Photosynthetic biofilms in pure tradition harness photo voltaic vitality in a mediatorless bio-photovoltaic cell (BPV) system. Power Environ. Sci. 4, 4699–4709 (2011).
Hong, H. et al. Enhanced interfacial electron switch between thylakoids and RuO2 nanosheets for photosynthetic vitality harvesting. Sci. Adv. 7, eabf2543 (2021).
Kim, S. I. L., Kim, Y. J., Hong, H., Yun, J. & Ryu, W. Electrosprayed thylakoid-alginate movie on a micro-pillar electrode for scalable photosynthetic vitality harvesting. ACS Appl. Mater. Interfaces 12, 54683–54693 (2020).
Sokol, Ok. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes utilizing redox polymers. Power Environ. Sci. 9, 3698–3709 (2016).
Friebe, V. M., Barszcz, A. J., Jones, M. R. & Frese, R. N. Sustaining electron switch pathways extends biohybrid photoelectrode stability to years. Angew. Chem. Int. Ed. 61, e202201148 (2022).
Pinhassi, R. I. et al. Hybrid bio-photo-electro-chemical cells for photo voltaic water splitting. Nat. Commun. 7, 12552 (2016).
Pankratova, G. et al. Supercapacitive photo-bioanodes and biosolar cells: a novel method for photo voltaic vitality harnessing. Adv. Power Mater. 7, 1602285 (2017).
Liu, L. & Choi, S. A self-charging cyanobacterial supercapacitor. Biosens. Bioelectron. 140, 111354 (2019).
Bombelli, P. et al. Floor morphology and floor vitality of anode supplies affect energy outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 14, 12221–12229 (2012).
Sawa, M. et al. Electrical energy technology from digitally printed cyanobacteria. Nat. Commun. 8, 1327 (2017).
Kracke, F., Vassilev, I. & Krömer, J. O. Microbial electron transport and vitality conservation — the muse for optimizing bioelectrochemical programs. Entrance. Microbiol. 6, 575 (2015).
Silva, V. D., Carletto, J. S., Carasek, E., Stambuk, B. U. & Da Graça Nascimento, M. Uneven discount of (4S)-(+)-carvone catalyzed by baker’s yeast: a inexperienced methodology for monitoring the conversion primarily based on liquid–liquid–liquid microextraction with polypropylene hole fiber membranes. Course of. Biochem. 48, 1159–1165 (2013).
Wang, F. et al. One-pot biocatalytic route from cycloalkanes to α,ω‐dicarboxylic acids by designed Escherichia coli consortia. Nat. Commun. 11, 5035 (2020).
Böhmer, S. et al. Enzymatic oxyfunctionalization pushed by photosynthetic water-splitting within the cyanobacterium Synechocystis sp. PCC 6803. Catalysts 7, 240 (2017).
Köninger, Ok. et al. Recombinant cyanobacteria for the uneven discount of C=C bonds fueled by the biocatalytic oxidation of water. Angew. Chem. Int. Ed. 55, 5582–5585 (2016).
Erdem, E. et al. Photobiocatalytic oxyfunctionalization with excessive response charge utilizing a baeyer-villiger monooxygenase from Burkholderia xenovorans in metabolically engineered cyanobacteria. ACS Catal. 12, 66–72 (2022).
Sengupta, A., Sunder, A. V., Sohoni, S. V. & Wangikar, P. P. The impact of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. J. Biotechnol. 289, 1–6 (2019).
Büchsenschütz, H. C. et al. Stereoselective biotransformations of cyclic imines in recombinant cells of Synechocystis sp. PCC 6803. ChemCatChem 12, 726–730 (2020).
Hoschek, A., Bühler, B. & Schmid, A. Stabilization and scale-up of photosynthesis-driven ω-hydroxylation of nonanoic acid methyl ester by two-liquid section whole-cell biocatalysis. Biotechnol. Bioeng. 116, 1887–1900 (2019).
Jurkaš, V. et al. Expression and exercise of heterologous hydroxyisocaproate dehydrogenases in Synechocystis sp. PCC 6803 ΔhoxYH. Eng. Microbiol. 2, 100008 (2022).
Hoschek, A. et al. Gentle-dependent and aeration-independent gram-scale hydroxylation of cyclohexane to cyclohexanol by CYP450 harboring Synechocystis sp. PCC 6803. Biotechnol. J. 14, 1800724 (2019).
Assil-Companioni, L. et al. Engineering of NADPH provide boosts photosynthesis-driven biotransformations. ACS Catal. 10, 11864–11877 (2020).
Berepiki, A., Gittins, J. R., Moore, C. M. & Bibby, T. S. Rational engineering of photosynthetic electron flux enhances light-powered cytochrome P450 exercise. Synth. Biol. 3, ysy009 (2018).
Spasic, J., Oliveira, P., Pacheco, C., Kourist, R. & Tamagnini, P. Engineering cyanobacterial chassis for improved electron provide towards a heterologous ene-reductase. J. Biotechnol. 360, 152–159 (2022).
Meng, H. et al. Over-expression of an electron transport protein OmcS supplies enough NADH for d-lactate manufacturing in cyanobacterium. Biotechnol. Biofuels 14, 109 (2021).
Tóth, G. S. et al. Photosynthetically produced sucrose by immobilized Synechocystis sp. PCC 6803 drives biotransformation in E. coli. Biotechnol. Biofuels Bioprod. 15, 146 (2022).
Li, C. et al. A extremely appropriate phototrophic neighborhood for carbon-negative biosynthesis. Angew. Chem. Int. Ed. 62, e202215013 (2023).
Löwe, H. & Kremling, A. In-depth computational evaluation of pure and synthetic carbon fixation pathways.BioDesign Res. 2021, 9898316 (2021).
Gabrielyan, L., Sargsyan, H. & Trchounian, A. Novel properties of photofermentative biohydrogen manufacturing by purple micro organism Rhodobacter sphaeroides: results of protonophores and inhibitors of accountable enzymes. Microb. Cell Reality. 14, 131 (2015).
Gosse, J. L. et al. Hydrogen manufacturing by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol. Prog. 23, 124–130 (2007).
Wegelius, A., Land, H., Berggren, G. & Lindblad, P. Semisynthetic [FeFe]-hydrogenase with secure expression and H2 manufacturing capability in a photosynthetic microbe. Cell Rep. Phys. Sci. 2, 100376 (2021).
Wegelius, A. et al. Technology of a practical, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Power Environ. Sci. 11, 3163–3167 (2018).
Lupacchini, S. et al. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab. Eng. 68, 199–209 (2021).
Ben-Zvi, O., Dafni, E., Feldman, Y. & Yacoby, I. Re-routing photosynthetic vitality for steady hydrogen manufacturing in vivo. Biotechnol. Biofuels 12, 266 (2019).
Li, H. et al. Suppressing hydrogen peroxide technology to attain oxygen-insensitivity of a [NiFe] hydrogenase in redox lively movies. Nat. Commun. 11, 920 (2020).
Xu, Z. et al. Algal cell bionics as a step in the direction of photosynthesis-independent hydrogen manufacturing. Nat. Commun. 14, 1872 (2023).
Khetkorn, W., Baebprasert, W., Lindblad, P. & Incharoensakdi, A. Redirecting the electron movement in the direction of the nitrogenase and bidirectional Hox-hydrogenase through the use of particular inhibitors leads to enhanced H2 manufacturing within the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour. Technol. 118, 265–271 (2012).
Li, Z. et al. Exogenous electrical energy flowing by means of cyanobacterial photosystem I drives CO2 valorization with excessive vitality effectivity. Power Environ. Sci. 14, 5480–5490 (2021).
Dong, F. et al. An engineered, non-diazotrophic cyanobacterium and its software in bioelectrochemical nitrogen fixation. Cell Rep. Phys. Sci. 2, 100444 (2021).
Perona-Vico, E., Feliu-Paradeda, L., Puig, S. & Bañeras, L. Micro organism coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis. Sci. Rep. 10, 19852 (2020).
Bai, W., Ranaivoarisoa, T. O., Singh, R., Rengasamy, Ok. & Bose, A. n-Butanol manufacturing by Rhodopseudomonas palustris TIE-1. Commun. Biol. 4, 1257 (2021).
Ranaivoarisoa, T. O., Singh, R., Rengasamy, Ok., Guzman, M. S. & Bose, A. In the direction of sustainable bioplastic manufacturing utilizing the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J. Ind. Microbiol. Biotechnol. 46, 1401–1417 (2019).
Zhang, J. Z. et al. Competing cost switch pathways on the photosystem II-electrode interface. Nat. Chem. Biol. 12, 1046–1052 (2016).
Caserta, G. et al. Engineering an [FeFe]-hydrogenase: do accent clusters affect O2 resistance and catalytic bias? J. Am. Chem. Soc. 140, 5516–5526 (2018).
Adamson, H. et al. Retuning the catalytic bias and overpotential of a [NiFe]-hydrogenase through a single amino acid change on the electron entry/exit website. J. Am. Chem. Soc. 139, 10677–10686 (2017).
Shapiro, D. M. et al. Protein nanowires with tunable performance and programmable self-assembly utilizing sequence-controlled synthesis. Nat. Commun. 13, 829 (2022).
Bateson, P. et al. Electrochemical characterisation of bio-bottle-voltaic (BBV) programs operated with algae and constructed with recycled supplies. Biology 7, 26 (2018).
Bozan, M., Schmid, A. & Bühler, Ok. Analysis of self-sustaining cyanobacterial biofilms for technical functions. Biofilm 4, 100073 (2022).
Srikanth, S., Pavani, T., Sarma, P. N. & Venkata Mohan, S. Synergistic interplay of biocatalyst with bio-anode as a operate of electrode supplies. Int. J. Hydrog. Power 36, 2271–2280 (2011).
Welter, E. S. et al. Figures of benefit for photocatalysis: comparability of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a semiconductor and a bio-photocatalyst for water splitting. Catalysts 11, 1415 (2021).
Howe, C. J. & Bombelli, P. Is it practical to make use of microbial photosynthesis to provide electrical energy immediately? PLoS Biol. 21, e3001970 (2023).
Sheppard, T. J., Specht, D. & Barstow, B. Higher restrict effectivity estimates for electromicrobial manufacturing of drop-in jet fuels. Bioelectrochemistry 154, 108506 (2023).
Ehrler, B. et al. Photovoltaics reaching for the Shockley–Queisser restrict. ACS Power Lett. 5, 3029–3033 (2020).
Tucci, M. et al. A storable mediatorless electrochemical biosensor for herbicide detection. Microorganisms 7, 630 (2019).
Eidenberger, L., Kogelmann, B. & Steinkellner, H. Plant-based biopharmaceutical engineering. Nat. Rev. Bioeng. 1, 426–439 (2023).
Jester, B. W. et al. Growth of spirulina for the manufacture and oral supply of protein therapeutics. Nat. Biotechnol. 40, 956–964 (2022).
Dos Santos Fernandes de Araujo, R. in The European Fee’s Information Heart for Bioeconomy Vol. 12 (Publications Workplace of the European Union, 2019).
Rodero, M., del, R., Herrero-Lobo, R., Pérez, V. & Muñoz, R. Affect of operational situations on the efficiency of biogas bioconversion into ectoines in pilot bubble column bioreactors. Bioresour. Technol. 358, 127398 (2022).
Hellingwerf, Ok. J., Veetil, V. P. & van der Woude, A. D. Erythritol Manufacturing in Cyanobacteria Patent no. US20190194671A1 (2015).
van der Woude, A. D. et al. Genetic engineering of Synechocystis PCC6803 for the photoautotrophic manufacturing of the sweetener erythritol. Microb. Cell Reality. 15, 60 (2016).
Marques Lameirinhas, R. A., Torres, J. P. N. & de Melo Cunha, J. P. A photovoltaic expertise evaluate: historical past, fundamentals and functions. Energies 15, 1823 (2022).
Lips, D., Schuurmans, J. M., Branco Dos Santos, F. & Hellingwerf, Ok. J. Some ways in the direction of ‘photo voltaic gasoline’: quantitative evaluation of probably the most promising methods and the principle challenges throughout scale-up. Power Environ. Sci. 11, 10–22 (2018).
Pérez, A. A., Chen, Q., Hernández, H. P., Branco dos Santos, F. & Hellingwerf, Ok. J. On using oxygenic photosynthesis for the sustainable manufacturing of commodity chemical substances. Physiol. Plant. 166, 413–427 (2019).
Kiran Kumar, V., Man mohan, Ok., Manangath, S. P. & Gajalakshmi, S. Modern pilot-scale constructed wetland-microbial gasoline cell system for enhanced wastewater therapy and bioelectricity manufacturing. Chem. Eng. J. 460, 141686 (2023).
Wen, X. et al. Efficient cultivation of microalgae for biofuel manufacturing: a pilot-scale analysis of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels 9, 123 (2016).
Heimann, Ok. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel manufacturing. Curr. Opin. Biotechnol. 38, 183–189 (2016).
Liao, Q. et al. Simultaneous enhancement of Chlorella vulgaris development and lipid accumulation by means of the synergy impact between mild and nitrate in a planar waveguide flat-plate photobioreactor. Bioresour. Technol. 243, 528–538 (2017).
Ng, S. Ok. Y., Abunasser, N., Danton, M. E., Perez, G. & Salley, S. O. Enclosed Photobioreactors with Adaptive Inside Illumination for the Cultivation of Algae Patent no. US20100028977A1 (2009).
Oey, M., Sawyer, A. L., Ross, I. L. & Hankamer, B. Challenges and alternatives for hydrogen manufacturing from microalgae. Plant Biotechnol. J. 14, 1487–1499 (2016).
Engler, C. et al. A Golden Gate modular cloning toolbox for crops. ACS Synth. Biol. 3, 839–843 (2014).
Crozet, P. et al. Start of a photosynthetic chassis: a MoClo toolkit enabling artificial biology within the microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 7, 2074–2086 (2018).
Vasudevan, R. et al. CyanoGate: a modular cloning suite for engineering cyanobacteria primarily based on the plant MoClo syntax. Plant. Physiol. 180, 39–55 (2019).
Immethun, C. M., Kathol, M., Changa, T. & Saha, R. Artificial biology instrument growth advances predictable gene expression within the metabolically versatile soil bacterium Rhodopseudomonas palustris. Entrance. Bioeng. Biotechnol. 10, 318 (2022).
Baker, P. L. et al. A molecular biology instrument package for the phototrophic firmicute Heliobacterium modesticaldum. Appl. Environ. Microbiol. 85, e01287-19 (2019).
Gisriel, C. J., Azai, C. & Cardona, T. Latest advances within the structural variety of response facilities. Photosynth. Res. 149, 329–343 (2021).
Kopf, M. et al. Comparative evaluation of the first transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21, 527–539 (2014).
Białek, R. et al. In situ spectroelectrochemical investigation of a biophotoelectrode primarily based on photoreaction facilities embedded in a redox hydrogel. Electrochim. Acta 330, 135190 (2020).
Nawrocki, W. J., Jones, M. R., Frese, R. N., Croce, R. & Friebe, V. M. In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode efficiency. Joule 7, 529–544 (2023).
Johnson, J. E. & Berry, J. A. The position of cytochrome b6f within the management of steady-state photosynthesis: a conceptual and quantitative mannequin. Photosynth. Res. 148, 101–136 (2021).
Saadat, N. P. et al. Computational evaluation of different photosynthetic electron flows linked with oxidative stress. Entrance. Plant Sci. 12, 2285 (2021).
Cengic, I., Cañadas, I. C., Minton, N. P. & Hudson, E. P. Inducible CRISPR/Cas9 permits for multiplexed and quickly segregated single-target genome enhancing in Synechocystis sp. PCC 6803. ACS Synth. Biol. 11, 3100–3113 (2022).
Brophy, J. A. N. & Voigt, C. A. Rules of genetic circuit design. Nat. Strategies 11, 508–520 (2014).
Sokol, Ok. P. et al. Photoreduction of CO2 with a formate dehydrogenase pushed by photosystem II utilizing a semi-artificial Z-scheme structure. J. Am. Chem. Soc. 140, 16418–16422 (2018).
Lawrence, J. M. et al. Artificial biology and bioelectrochemical instruments for electrogenetic system engineering. Sci. Adv. 8, 5091 (2022).
Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019).
Satanowski, A. et al. Awakening a latent carbon fixation cycle in Escherichia coli. Nat. Commun. 11, 5812 (2020).
Cohen-Ofri, I. et al. Zinc-bacteriochlorophyllide dimers in de novo designed four-helix bundle proteins. A mannequin system for pure mild vitality harvesting and dissipation. J. Am. Chem. Soc. 133, 9526–9535 (2011).
Lishchuk, A. et al. An artificial organic quantum optical system. Nanoscale 10, 13064–13073 (2018).
Mancini, J. A. et al. De novo artificial biliprotein design, meeting and excitation vitality switch. J. R. Soc. Interface 15, 20180021 (2018).
Kodali, G. et al. Design and engineering of water-soluble light-harvesting protein maquettes. Chem. Sci. 8, 316–324 (2016).
Ennist, N. M. et al. De novo protein design of photochemical response facilities. Nat. Commun. 13, 4937 (2022).
Atkinson, J. T. et al. Metalloprotein switches that show chemical-dependent electron switch in cells. Nat. Chem. Biol. 15, 189–195 (2019).
Hardy, B. J. et al. Mobile manufacturing of a de novo membrane cytochrome. Biophys. Comput. Biol. 120, e2300137120 (2023).
Yu, Ok. et al. Photosynthesis-assisted transforming of three-dimensional printed buildings. Proc. Natl Acad. Sci. USA 118, e2016524118 (2021).
Kristensen, S. B., van Mourik, T., Pedersen, T. B., Sørensen, J. L. & Muff, J. Simulation of electrochemical properties of naturally occurring quinones. Sci. Rep. 10, 13571 (2020).
Zajdel, T. J. et al. PEDOT:PSS-based multilayer bacterial-composite movies for bioelectronics. Sci. Rep. 8, 15293 (2018).
Qi, R. et al. In situ synthesis of photoactive polymers on a dwelling cell floor through bio-palladium catalysis for modulating organic capabilities. Angew. Chem. Int. Ed. 60, 5759–5765 (2021).
Yu, Y. Y. et al. Single cell electron collectors for extremely environment friendly wiring-up digital abiotic/biotic interfaces. Nat. Commun. 11, 4087 (2020).
Ort, D. R. et al. Redesigning photosynthesis to sustainably meet world meals and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).
Lea-Smith, D. J. et al. Phycobilisome-deficient strains of Synechocystis sp. PCC 6803 have decreased dimension and require carbon-limiting situations to exhibit enhanced productiveness. Plant Physiol. 165, 705–714 (2014).
Friedland, N. et al. Nice-tuning the photosynthetic mild harvesting equipment for improved photosynthetic effectivity and biomass yield. Sci. Rep. 9, 13028 (2019).
Kromdijk, J. et al. Enhancing photosynthesis and crop productiveness by accelerating restoration from photoprotection. Science 354, 857–861 (2016).
Ermakova, M. et al. Set up of C4 photosynthetic pathway enzymes in rice utilizing a single assemble. Plant Biotechnol. J. 19, 575–588 (2021).
Roell, M. S. et al. An artificial C4 shuttle through the β-hydroxyaspartate cycle in C3 crops. Proc. Natl Acad. Sci. USA 118, e2022307118 (2021).
Hitchcock, A. et al. Redesigning the photosynthetic mild reactions to boost photosynthesis — the PhotoRedesign consortium. Plant J. 109, 23–34 (2022).
Liu, J., Friebe, V. M., Frese, R. N. & Jones, M. R. Polychromatic photo voltaic vitality conversion in pigment-protein chimeras that unite the 2 kingdoms of (bacterio)chlorophyll-based photosynthesis. Nat. Commun. 11, 1542 (2020).
Liu, H. et al. Boosting cyanobacteria development by fivefold with aggregation-induced emission luminogens: towards the event of a biofactory. ACS Maintain. Chem. Eng. 9, 15258–15266 (2021).
Search engine marketing, Y. H., Lee, Y., Jeon, D. Y. & Han, J. I. Enhancing the sunshine utilization effectivity of microalgae utilizing natural dyes. Bioresour. Technol. 181, 355–359 (2015).
Yoneda, Y. et al. Ultrafast photodynamics and quantitative analysis of biohybrid photosynthetic antenna and response heart complexes producing photocurrent. J. Phys. Chem. C 124, 8605–8615 (2020).
Yoneda, Y. et al. Extension of light-harvesting means of photosynthetic light-harvesting advanced 2 (LH2) by means of ultrafast vitality switch from covalently connected synthetic chromophores. J. Am. Chem. Soc. 137, 13121–13129 (2015).
Liu, J. et al. Mechanisms of self-assembly and vitality harvesting in tuneable conjugates of quantum dots and engineered photovoltaic proteins. Small 15, 1804267 (2019).
Amoruso, G. et al. Excessive-efficiency excitation vitality switch in biohybrid quantum dot-bacterial response heart nanoconjugates. J. Phys. Chem. Lett. 12, 5448–5455 (2021).
Nabiev, I. et al. Fluorescent quantum dots as synthetic antennas for enhanced mild harvesting and vitality switch to photosynthetic response facilities. Angew. Chem. Int. Ed. 49, 7217–7221 (2010).
Li, Z. et al. Biomimetic electron transport through multiredox shuttles from photosystem II to a photoelectrochemical cell for photo voltaic water splitting. Power Environ. Sci. 10, 765–771 (2017).
Sokol, Ok. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Power 3, 944–951 (2018).
Martín, S. S., Rivero, M. J. & Ortiz, I. Unravelling the mechanisms that drive the efficiency of photocatalytic hydrogen manufacturing. Catalysts 10, 901 (2020).
Hu, Q. et al. Ultrafast electron switch in Au-cyanobacteria hybrid for photo voltaic to chemical manufacturing. ACS Power Lett. 20, 677–684 (2022).
Croce, R., van Grondelle, R., van Amerongen, H. & van Stokkum, I. Gentle Harvesting in Photosynthesis (CRC Press, 2018).
Nicholls, D. G. & Ferguson, S. Bioenergetics: Fourth Version (Elsevier, 2013).
[ad_2]