[ad_1]
Hori, Y., Murata, A., Takahashi, R. & Suzuki, S. Enhanced formation of ethylene and alcohols at ambient temperature and stress in electrochemical discount of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Commun. 17–19 (1988).
Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical discount of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).
Resasco, J. et al. Promoter results of alkali steel cations on the electrochemical discount of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).
Hammer, B. & Nørskov, J. Okay. Theoretical floor science and catalysis—calculations and ideas. Adv. Catal. 45, 71–129 (2000).
Watanabe, M., Shibata, M., Kato, A., Azuma, M. & Sakata, T. Design of alloy electrocatalysts for CO2 discount III. The selective and reversible discount of CO2 on Cu alloy electrodes. J. Electrochem. Soc. 138, 3382–3389 (1991).
Kim, D. et al. Electrochemical activation of CO2 by way of atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).
Zaza, L., Rossi, Okay. & Buonsanti, R. Effectively-defined copper-based nanocatalysts for selective electrochemical discount of CO2 to C2 merchandise. ACS Vitality Lett. 7, 1284–1291 (2022).
Wang, X. et al. Morphology and mechanism of extremely selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).
Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 discount selective for C≥2 merchandise on polycrystalline copper with N-substituted pyridinium components. ACS Cent. Sci. 3, 853–859 (2017).
Dinh, C. T. et al. CO2 electroreduction to ethylene through hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).
Zhang, Z.-Q., Banerjee, S., Thoi, V. S. & Shoji Corridor, A. Reorganization of interfacial water by an amphiphilic cationic surfactant promotes CO2 discount. J. Phys. Chem. Lett. 11, 5457–5463 (2020).
Kuhl, Okay. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical discount of carbon dioxide on metallic copper surfaces. Vitality Environ. Sci. 5, 7050–7059 (2012).
Li, C. W. & Kanan, M. W. CO2 discount at low overpotential on Cu electrodes ensuing from the discount of thick Cu2O movies. J. Am. Chem. Soc. 134, 7231–7234 (2012).
Gomes, R. J. et al. Probing electrolyte affect on CO2 discount in aprotic solvents. J. Phys. Chem. C 126, 13595–13606 (2022).
Dong, Q., Zhang, X., He, D., Lang, C. & Wang, D. Position of H2O in CO2 electrochemical discount as studied in a water-in-salt system. ACS Cent. Sci. 5, 1461–1467 (2019).
Whipple, D. T., Finke, E. C. & Kenis, P. J. A. Microfluidic reactor for the electrochemical discount of carbon dioxide: the impact of pH. Electrochem. Strong State Lett. 13, B109 (2010).
Gattrell, M., Gupta, N. & Co, A. A assessment of the aqueous electrochemical discount of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).
Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes with out steel cations in resolution. Nat. Catal. 4, 654–662 (2021).
Malkani, A. S., Anibal, J. & Xu, B. Cation impact on interfacial CO2 focus within the electrochemical CO2 discount response. ACS Catal. 10, 14871–14876 (2020).
Chan, Okay. A number of primary ideas in electrochemical carbon dioxide discount. Nat. Commun. 11, 5954 (2020).
Thorson, M. R., Siil, Okay. I. & Kenis, P. J. A. Impact of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).
Ringe, S. et al. Understanding cation results in electrochemical CO2 discount. Vitality Environ. Sci. 12, 3001–3014 (2019).
Luo, M. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper through tuning of adsorbed hydrogen. Nat. Commun. 10, 5814 (2019).
Nesbitt, N. T. & Smith, W. A. Water and solute actions regulate CO2 discount in gas-diffusion electrodes. J. Phys. Chem. C 125, 13085–13095 (2021).
Ren, W., Xu, A., Chan, Okay. & Hu, X. A cation focus gradient strategy to tune the selectivity and exercise of CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202214173 (5022).
Shin, S.-J. et al. A unifying mechanism for cation impact modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 13, 5482 (2022).
Xie, M. S. et al. Amino acid-modified copper electrodes for the improved selective electroreduction of carbon dioxide in direction of hydrocarbons. Vitality Environ. Sci. 9, 1687–1695 (2016).
Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO discount. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).
Li, J. et al. Hydroxide is just not a promoter of C2+ product formation within the electrochemical discount of CO on copper. Angew. Chem. Int. Ed. 59, 4464–4469 (2020).
Bro, P. & Kang, H. Y. The low‐temperature exercise of water in concentrated KOH options. J. Electrochem. Soc. 118, 1430 (1971).
Nitopi, S. et al. Progress and views of electrochemical CO2 discount on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).
Chang, X. et al. C–C coupling is unlikely to be the rate-determining step within the formation of C2+ merchandise within the copper-catalyzed electrochemical discount of CO. Angew. Chem. Int. Ed. 61, e202111167 (2022).
Lu, X., Shinagawa, T. & Takanabe, Okay. Product distribution management guided by a microkinetic evaluation for CO discount at high-flux electrocatalysis utilizing gas-diffusion Cu electrodes. ACS Catal. 13, 1791–1803 (2023).
Suo, L. et al. Water-in-salt electrolyte allows high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).
Zhang, R. et al. Potential-dependent layering within the electrochemical double layer of water-in-salt electrolytes. ACS Appl. Vitality Mater. 3, 8086–8094 (2020).
Li, C.-Y. et al. Unconventional interfacial water construction of extremely concentrated aqueous electrolytes at detrimental electrode polarizations. Nat. Commun. 13, 5330 (2022).
Chen, Y., Zhang, Y.-H. & Zhao, L.-J. ATR-FTIR spectroscopic research on aqueous LiClO4, NaClO4, and Mg(ClO4)2 options. Phys. Chem. Chem. Phys. 6, 537–542 (2004).
Miller, A. G. & Macklin, J. W. Vibrational spectroscopic research of sodium perchlorate contact-ion-pair formation in aqueous resolution. J. Phys. Chem. 89, 1193–1201 (1985).
Toner, J. D. & Catling, D. C. Water actions of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental warmth capacities: water exercise >0.6 under 200 Okay. Geochim. Cosmochim. Acta 181, 164–174 (2016).
Gileadi, E. Bodily Electrochemistry: Fundamentals, Methods and Functions (Wiley-VCH, 2011).
Goyal, A. & Koper, M. T. M. The interrelated impact of cations and electrolyte pH on the hydrogen evolution response on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).
Wuttig, A., Ryu, J. & Surendranath, Y. Electrolyte competitors controls floor binding of CO intermediates to CO2 discount catalysts. J. Phys. Chem. C 125, 17042–17050 (2021).
Ovalle, V. J. & Waegele, M. M. Impression of electrolyte anions on the adsorption of CO on Cu electrodes. J. Phys. Chem. C 124, 14713–14721 (2020).
Aoki, Okay. J., He, R. & Chen, J. Double-layer capacitances attributable to ion–solvent interplay within the type of Langmuir-typed focus dependence. Electrochem. 2, 631–642 (2021).
Xue, S., Garlyyev, B., Auer, A., Kunze-Liebhäuser, J. & Bandarenka, A. S. How the character of the alkali steel cations influences the double-layer capacitance of Cu, Au, and Pt single-crystal electrodes. J. Phys. Chem. C 124, 12442–12447 (2020).
Garlyyev, B., Xue, S., Watzele, S., Scieszka, D. & Bandarenka, A. S. Affect of the character of the alkali steel cations on {the electrical} double-layer capacitance of mannequin Pt(111) and Au(111) electrodes. J. Phys. Chem. Lett. 9, 1927–1930 (2018).
Antipin, D. & Risch, M. Calculation of the Tafel slope and response order of the oxygen evolution response between pH 12 and pH 14 for the adsorbate mechanism. Electrochem. Sci. Adv. https://doi.org/10.1002/elsa.202100213 (2022).
Fletcher, S. Tafel slopes from first ideas. J. Strong State Electrochem. 13, 537–549 (2009).
Eberhardt, D., Santos, E. & Schmickler, W. Hydrogen evolution on silver single crystal electrodes—first outcomes. J. Electroanal. Chem. 461, 76–79 (1999).
He, M. et al. Selective enhancement of methane formation in electrochemical CO2 discount enabled by a Raman-inactive oxygen-containing species on Cu. ACS Catal. 12, 6036–6046 (2022).
Thermo Scientific Orion ROSS pH Electrodes, Consumer Guide. 263745-001, Rev. B, pg. 16. Nov. 2014.
Knauss, Okay. G., Wolery, T. J. & Jackson, Okay. J. A brand new strategy to measuring pH in brines and different concentrated electrolytes. Geochim. Cosmochim. Acta 54, 1519–1523 (1990).
Mesmer, R. E. Feedback on A brand new strategy to measuring pH in brines and different concentrated electrolytes by Okay. G. Knauss, T. J. Wolery, and Okay. J. Jackson. Geochim. Cosmochim. Acta (USA) 55 (1991).
Bard, A. J. & Faulkner, L. R. Electrochemical Strategies: Fundamentals and Functions, 2nd edn. (Wiley, New York, 2001).
Singh, R. Okay., Devivaraprasad, R., Kar, T., Chakraborty, A. & Neergat, M. Electrochemical impedance spectroscopy of oxygen discount response (ORR) in a rotating disk electrode configuration: impact of ionomer content material and carbon-support. J. Electrochem. Soc. 162, F489–F498 (2015).
Jorcin, J.-B., Orazem, M. E., Pebere, N. & Tribollet, B. CPE evaluation by native impedance evaluation. Electrochim. Acta 51, 1473–1479 (2006).
SpectroInlets Tender Ionization EC-MS. Technical Word #7; https://spectroinlets.com/wpcontent/uploads/2022/01/Technical_note__7.pdf
Li, J. et al. Selective CO2 electrolysis to CO utilizing remoted antimony alloyed copper. Nat. Commun. 14, 340 (2023).
Lee, M. H. et al. Towards a low-cost high-voltage sodium aqueous rechargeable battery. Mater. At this time 29, 26–36, 1369–7021 (2019).
Yu, H. & Obrovac, M. N. Quantitative willpower of carbon dioxide content material in natural electrolytes by infrared spectroscopy. J. Electrochem. Soc. 166, A2467 (2019).
[ad_2]