[ad_1]
Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow batteries: from metals to natural redox-active supplies. Angew. Chem. Int. Ed. 56, 686–711 (2017).
Li, M., Rhodes, Z., Cabrera-Pardo, J. R. & Minteer, S. D. Current developments in rational design of non-aqueous natural redox stream batteries. Maintain. Power Fuels 4, 4370–4389 (2020).
Luo, J., Hu, B., Hu, M., Zhao, Y. & Liu, T. L. Standing and prospects of natural redox stream batteries towards sustainable vitality storage. ACS Power Lett. 4, 2220–2240 (2019).
Kowalski, J. A., Su, L., Milshtein, J. D. & Brushett, F. R. Current advances in molecular engineering of redox lively natural molecules for nonaqueous stream batteries. Curr. Opin. Chem. Eng. 13, 45–52 (2016).
Soloveichik, G. L. Circulate batteries: present standing and traits. Chem. Rev. 115, 11533–11558 (2015).
Wedege, Ok., Dražević, E., Konya, D. & Bentien, A. Natural redox species in aqueous stream batteries: redox potentials, chemical stability and solubility. Sci. Rep. 6, 1–13 (2016).
Er, S., Suh, C., Marshak, M. P. & Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox stream battery. Chem. Sci. 6, 885–893 (2015).
Sevov, C. S. et al. Evolutionary design of low molecular weight natural anolyte supplies for purposes in nonaqueous redox stream batteries. J. Am. Chem. Soc. 137, 14465–14472 (2015).
Robinson, S. G., Yan, Y., Hendriks, Ok. H., Sanford, M. S. & Sigman, M. S. Creating a predictive solubility mannequin for monomeric and oligomeric cyclopropenium-based stream battery catholytes. J. Am. Chem. Soc. 141, 10171–10176 (2019).
Sevov, C. S. et al. Bodily natural strategy to persistent, cyclable, low-potential electrolytes for stream battery purposes. J. Am. Chem. Soc. 139, 2924–2927 (2017).
Reichardt, C. & Welton, T. Solvents and Solvent Results in Natural Chemistry (Wiley, 2011).
Hansen, C. M. Hansen Solubility Parameters: A Consumer’s Handbook (CRC Press, 2000).
Barton, A. F. M. Solubility parameters. Chem. Rev. 75, 731–753 (1975).
Geysens, P., Evers, J., Dehaen, W., Fransaer, J. & Binnemans, Ok. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for natural redox stream batteries via molecular modification. RSC Adv. 10, 39601–39610 (2020).
Attanayake, N. H. et al. Tailoring two-electron-donating phenothiazines to allow high-concentration redox electrolytes to be used in nonaqueous redox stream batteries. Chem. Mater. 31, 4353–4363 (2019).
Milshtein, J. D. et al. Excessive present density, lengthy length biking of soluble natural lively species for non-aqueous redox stream batteries. Power Environ. Sci. 9, 3531–3543 (2016).
Huang, J. et al. Liquid catholyte molecules for nonaqueous redox stream batteries. Adv. Power Mater. 5, 1–6 (2015).
Lall-Ramnarine, S. I. et al. Connecting structural and transport properties of ionic liquids with cationic oligoether chains. J. Electrochem. Soc. 164, H5247–H5262 (2017).
Gong, Ok., Fang, Q., Gu, S., Li, S. F. Y. & Yan, Y. Nonaqueous redox-flow batteries: natural solvents, supporting electrolytes, and redox pairs. Power Environ. Sci. 8, 3515–3530 (2015).
Sevov, C. S., Hendriks, Ok. H. & Sanford, M. S. Low-potential pyridinium anolyte for aqueous redox stream batteries. J. Phys. Chem. C 121, 24376–24380 (2017).
Cheng, W. C. & Kurth, M. J. The Zincke response. A evaluate. Org. Prep. Proced. Int. 34, 585–608 (2002).
DiMauro, E. F. & Kozlowski, M. C. Phosphabenzenes as electron withdrawing phosphine ligands in catalysis. J. Chem. Soc. Perkin. Trans. 2, 439–444 (2002).
Yue, H. et al. Nickel-catalyzed C–N bond activation: activated main amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).
Abraham, M. H. & Le, J. The correlation and prediction of the solubility of compounds in water utilizing an amended solvation vitality relationship. J. Pharm. Sci. 88, 868–880 (1999).
Brethomé, A. V., Fletcher, S. P. & Paton, R. S. Conformational results on physical-organic descriptors: the case of sterimol steric parameters. ACS Catal. 9, 2313–2323 (2019).
Verloop, A., Hoogenstraaten, W. & Tipker, J. in Drug Design. (ed. Ariënsvol, E. J.) vol. 1962, 165–207 (Tutorial Press, 1976).
Verloop, A. in The Sterimol Method: Additional Growth of the Technique and New Purposes (eds Doyle, P. & Fujita, T.) 339–344 (Elsevier, 1983).
Karthikeyan, S., Ramanathan, V. & Mishra, B. Ok. Affect of the substituents on the CH···π interplay: benzene–methane complicated. J. Phys. Chem. A 117, 6687–6694 (2013).
Wheeler, S. E., Seguin, T. J., Guan, Y. & Doney, A. C. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res. 49, 1061–1069 (2016).
Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).
Houser, J. et al. The CH–π interplay in protein–carbohydrate binding: bioinformatics and in vitro quantification. Chem. Eur. J. 26, 10769–10780 (2020).
Tsuzuki, S., Honda, Ok., Uchimaru, T., Mikami, M. & Tanabe, Ok. The magnitude of the CH/π interplay between benzene and a few mannequin hydrocarbons. J. Am. Chem. Soc. 122, 3746–3753 (2000).
Knowles, R. R. & Jacobsen, E. N. Enticing noncovalent interactions in uneven catalysis: Hyperlinks between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).
Israelachvili, J. N. Intermolecular and Floor Forces (Tutorial Press, 2011).
Mclachlan, A. D. Impact of the medium on dispersion forces in liquids. Focus on. Faraday Soc. 40, 239–245 (1965).
Davey, R. J., Schroeder, S. L. M. & Ter Horst, J. H. Nucleation of natural crystals—a molecular perspective. Angew. Chem. Int. Ed. 52, 2166–2179 (2013).
Hulme, A. T. et al. Seek for a predicted hydrogen bonding motif—a multidisciplinary investigation into the polymorphism of 3-azabicyclo[3.3.1]nonane-2,4-dione. J. Am. Chem. Soc. 129, 3649–3657 (2007).
Davey, R. J., Dent, G., Mughal, R. Ok. & Parveen, S. Regarding the relationship between structural and development synthons in crystal nucleation: resolution and crystal chemistry of carboxylic acids as revealed via IR spectroscopy. Crystal Development Design 6, 1788–1796 (2006).
Tresca, B. W. et al. Substituent results in CH hydrogen bond interactions: linear free vitality relationships and affect of anions. J. Am. Chem. Soc. 137, 14959–14967 (2015).
Simeral, L. & Amey, R. L. Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1443–1446 (1970).
Maryott, A. A. & Smith, E. Desk of Dielectric Constants of Pure Liquids. 514, 1–56 (US Authorities Printing Workplace, 1951).
Kolling, O. W. Dielectric characterization of cosolvent techniques containing tetrahydrofuran. Trans. Kansas Acad. Sci. 94, 107 (1991).
Richards, T. W. & Shipley, J. W. The dielectric constants of typical aliphatic and fragrant hydrocarbons, cyclohexane, cyclohexanone, and cyclohexanol. J. Am. Chem. Soc. 41, 2002–2012 (1919).
Pinal, R. Impact of molecular symmetry on melting temperature and solubility. Org. Biomol. Chem. 2, 2692–2699 (2004).
Umezawa, Y., Tsuboyama, S., Honda, Ok., Uzawa, J. & Nishio, M. CH/π interplay within the crystal construction of natural compounds. A database examine. Bull. Chem. Soc. Jpn 71, 1207–1213 (1998).
Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).
Sheldrick, G. M. SHELXT—built-in space-group and crystal-structure dedication. Acta Crystallogr. A 71, 3–8 (2015).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Ok. & Puschmann, H. OLEX2: an entire construction resolution, refinement and evaluation program. J. Appl. Crystallogr. 42, 339–341 (2009).
Kawahara, S. I., Tsuzuki, S. & Uchimaru, T. Theoretical examine of the C-F/π interplay: enticing interplay between fluorinated alkane and an electron-deficient π-system. J. Phys. Chem. A 108, 6744–6749 (2004).
Wheeler, S. E. & Houk, Ok. N. Substituent results in cation/π interactions and electrostatic potentials above the facilities of substituted benzenes are due primarily to through-space results of the substituents. J. Am. Chem. Soc. 131, 3126–3127 (2009).
Sinnokrot, M. O. & Sherrill, C. D. Substituent results in π–π interactions: sandwich and t-shaped configurations. J. Am. Chem. Soc. 126, 7690–7697 (2004).
[ad_2]