Home Chemistry Microstructure and crystal order throughout freezing of supercooled water drops

Microstructure and crystal order throughout freezing of supercooled water drops

Microstructure and crystal order throughout freezing of supercooled water drops

[ad_1]

  • Angell, C. A., Oguni, M. & Sichina, W. J. Warmth capability of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Sellberg, J. A. et al. Ultrafast X-ray probing of water construction under the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stöckel, P., Weidinger, I. M., Baumgartel, H. & Leisner, T. Charges of homogeneous ice nucleation in levitated H2O and D2O droplets. J. Phys. Chem. A 109, 2540–2546 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Stan, C. A. et al. A microfluidic equipment for the examine of ice nucleation in supercooled water drops. Lab Chip 9, 2293–2305 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagen, D. E., Anderson, R. J. & Kassner, J. L. Homogeneous condensation–freezing nucleation fee measurements for small water droplets in an growth cloud chamber. J. Atmos. Sci. 38, 1236–1243 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Wildeman, S., Sterl, S., Solar, C. & Lohse, D. Quick dynamics of water droplets freezing from the surface in. Phys. Rev. Lett. 118, 084101 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lauber, A., Kiselev, A., Pander, T., Handmann, P. & Leisner, T. Secondary ice formation throughout freezing of levitated droplets. J. Atmos. Sci. 75, 2815–2826 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Murray, B. J., Knopf, D. A. & Bertram, A. Okay. The formation of cubic ice below circumstances related to Earth’s ambiance. Nature 434, 202–205 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Construction of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buttersack, T. & Bauerecker, S. Crucial radius of supercooled water droplets: on the transition towards dendritic freezing. J. Phys. Chem. B 120, 504–512 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmaeildoost, N. et al. Heterogeneous ice development in micron-sized water droplets on account of spontaneous freezing. Crystals 12, 65 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Springer, 2010).

  • Murray, B. J., Carslaw, Okay. S. & Subject, P. R. Opinion: Cloud-phase local weather suggestions and the significance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korolev, A. & Leisner, T. Assessment of experimental research of secondary ice manufacturing. Atmos. Chem. Phys. 20, 11767–11797 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Subject, P. et al. Secondary ice manufacturing: present state of the science and proposals for the longer term. Meteorol. Monogr. 58, 7.1–7.20 (2017).


    Google Scholar
     

  • Kleinheins, J., Kiselev, A., Keinert, A., Type, M. & Leisner, T. Thermal imaging of freezing drizzle droplets: strain launch occasions as a supply of secondary ice particles. J. Atmos. Sci. 78, 1703–1713 (2021).


    Google Scholar
     

  • Korolev, A. et al. Statement of secondary ice manufacturing in clouds at low temperatures. Atmos. Chem. Phys. 22, 13103–13113 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malkin, T. L. et al. Stacking dysfunction in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maruyama, M. et al. X-ray evaluation of the construction of premelted layers at ice interfaces. Jpn. J. Appl. Phys. 39, 6696–6699 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sprint, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical penalties. Rev. Mod. Phys. 78, 695–741 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laksmono, H. et al. Anomalous conduct of the homogeneous ice nucleation fee in “no-man’s land”. J. Phys. Chem. Lett. 6, 2826–2832 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buttersack, T., Weiss, V. C. & Bauerecker, S. Hypercooling temperature of water is about 100 Okay larger than calculated earlier than. J. Phys. Chem. Lett. 9, 471–475 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keinert, A., Spannagel, D., Leisner, T. & Kiselev, A. Secondary ice manufacturing upon freezing of freely falling drizzle droplets. J. Atmos. Sci. 77, 2959–2967 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Thomson, E. S., Hansen-Goos, H., Wettlaufer, J. S. & Wilen, L. A. Grain boundary melting in ice. J. Chem. Phys. 138, 124707 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Niozu, A. et al. Crystallization kinetics of atomic crystals revealed by a single-shot and single-particle X-ray diffraction experiment. Proc. Natl Acad. Sci. USA 118, e2111747118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson, G. Okay. & Corridor, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Hondoh, T. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih. Philos. Magazine. 95, 3590–3620 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haji-Akbari, A. & Debenedetti, P. G. Direct calculation of ice homogeneous nucleation fee for a molecular mannequin of water. Proc. Natl Acad. Sci. USA 112, 10582–10588 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupi, L. et al. Function of stacking dysfunction in ice nucleation. Nature 551, 218–222 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray, B. J. & Bertram, A. Okay. Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys. 8, 186–192 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, M. N. et al. The coherent X-ray imaging instrument on the Linac Coherent Mild Supply. J. Synchrotron Radiat. 22, 514–519 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hart, P. et al. The CSPAD megapixel x-ray digital camera at LCLS. Proc. SPIE 8504, 51–61 (2012).


    Google Scholar
     

  • Stan, C. A. et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 12, 966–971 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Brownscombe, J. & Thorndike, N. Freezing and shattering of water droplets in free fall. Nature 220, 687–689 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Stan, C. A. et al. Rocket drops: the self-propulsion of supercooled freezing drops. Phys. Rev. Fluids 8, L021601 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kalita, A. X-ray laser diffraction and optical picture information from freezing supercooled water drops. CXIDB ID 217. CXIDB https://doi.org/10.11577/1973475 (2023).

  • Stan, C. A., Marte, S., Kalita, A. & Mrozek-McCourt, M. Separation of sharp and diffuse diffraction patterns from X-ray laser scattering of freezing water drops. Model 1.0. Zenodo https://doi.org/10.5281/zenodo.7908740 (2023).

  • Yefanov, O. et al. Correct dedication of segmented X-ray detector geometry. Choose. Categorical 23, 28459–28470 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Treacy, M., Newsam, J. & Deem, M. A common recursion technique for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hudait, A., Qiu, S. W., Lupi, L. & Molinero, V. Free power contributions and structural characterization of stacking disordered ices. Phys. Chem. Chem. Phys. 18, 9544–9553 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaya, A. J. et al. How cubic can ice be? J. Phys. Chem. Lett. 8, 3216–3222 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stan, C. A., Kalita, A. & Mrozek-McCourt, M. Modeling of supercooling, solidification, and freezing phases of water drops. Model 1.0. Zenodo https://doi.org/10.5281/zenodo.7908648 (2023).

  • Smith, J. D., Cappa, C. D., Drisdell, W. S., Cohen, R. C. & Saykally, R. J. Raman thermometry measurements of free evaporation from liquid water droplets. J. Am. Chem. Soc. 128, 12892–12898 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crank, J. & Nicolson, P. A sensible technique for numerical analysis of options of partial differential equations of the heat-conduction sort. Math. Proc. Camb. Philos. Soc. 43, 50–67 (1947).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Goy, C. et al. Shrinking of quickly evaporating water microdroplets reveals their excessive supercooling. Phys. Rev. Lett. 120, 015501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, Okay., Arakawa, M. & Terasaki, A. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum. Phys. Chem. Chem. Phys. 20, 28435–28444 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenfeld, D. & Woodley, W. L. Deep convective clouds with sustained supercooled liquid water all the way down to -37.5 °C. Nature 405, 440–442 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaya, A. J. & Wyslouzil, B. E. Ice nucleation charges close to ~225 Okay. J. Chem. Phys. 148, 084501 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zobrist, B., Koop, T., Luo, B., Marcolli, C. & Peter, T. Heterogeneous ice nucleation fee coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 111, 2149–2155 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ickes, L., Welti, A., Hoose, C. & Lohmann, U. Classical nucleation principle of homogeneous freezing of water: thermodynamic and kinetic parameters. Phys. Chem. Chem. Phys. 17, 5514–5537 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koop, T. & Murray, B. J. A bodily constrained classical description of the homogeneous nucleation of ice in water. J. Chem. Phys. 145, 211915 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pruppacher, H. R. Interpretation of experimentally decided development charges of ice crystals in supercooled water. J. Chem. Phys. 47, 1807–1813 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hooke, R. & Jeeves, T. A. “Direct search” answer of numerical and statistical issues. J. ACM 8, 212–229 (1961).

    Article 
    MATH 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here