[ad_1]
Becker, C. A., Tavazza, F., Trautt, Z. T. & Buarque de Macedo, R. A. Issues for selecting and utilizing drive fields and interatomic potentials in supplies science and engineering. Curr. Opin. Strong State Mater. Sci. 17, 277–283 (2013).
Handley, C. M. & Behler, J. Subsequent era interatomic potentials for condensed programs. Eur. Phys. J. B 87, 1–16 (2014).
Durrant, J. D. & McCammon, J. A. Molecular dynamics simulations and drug discovery. BMC Biol. 9, 71–80 (2011).
Hollingsworth, S. A. & Dror, R. D. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).
Jones, R. O. Density purposeful concept: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).
Silvestrelli, P. L., Alavi, A., Parrinello, M. & Frenkel, D. Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996).
Zijlstra, E. S., Kalitsov, A., Zier, T. & Garcia, M. E. Squeezed thermal phonons precurse nonthermal melting of silicon as a perform of fluence. Phys. Rev. X 3, 011005 (2013).
Thapa, R., Ugwumadu, C., Nepal, Okay., Trembly, J. & Drabold, D. Ab initio simulation of amorphous graphite. Phys. Rev. Lett. 128, 236402 (2022).
Deringer, V. L., Caro, M. A. & Csányi, G. Machine studying interatomic potentials as rising instruments for supplies science. Adv. Mater. 31, 1902765 (2019).
Behler, J. 4 generations of high-dimensional neural community potentials. Chem. Rev. 121, 10037–10072 (2021).
Dhaliwal, G., Nair, P. B. & Singh, C. V. Machine realized interatomic potentials utilizing random options. Npj Comput. Mater. 8, 7 (2022).
Xu, C. & Smart, F. Current advances in fibre lasers for nonlinear microscopy. Nat. Photon. 7, 875–882 (2013).
Chung, S. H. & Mazur, E. Surgical functions of femtosecond lasers. J. Biophotonics 2, 557–572 (2009).
Sugioka, Okay. & Cheng, Y. Ultrafast lasers–dependable instruments for superior supplies processing. Gentle Sci. Appl. 3, e149 (2014).
Phillips, Okay. C., Gandhi, H. H., Mazur, E. & Sundaram, S. Okay. Ultrafast laser processing of supplies: A evaluation. Adv. Choose. Photon. 7, 684–712 (2015).
Shokeen, L. & Schelling, P. Okay. Thermodynamics and kinetics of silicon below circumstances of robust digital excitation. J. Appl. Phys. 109, 073503 (2011).
Darkins, R., Ma, P.-W., Murphy, S. T. & Duffy, D. M. Simulating electronically pushed structural adjustments in silicon with two-temperature molecular dynamics. Phys. Rev. B 98, 024304 (2018).
Bauerhenne, B., Lipp, V. P., Zier, T., Zijlstra, E. S. & Garcia, M. E. Self-learning methodology for building of analytical interatomic potentials to explain laser-excited supplies. Phys. Rev. Lett. 124, 085501 (2020).
Cavalleri, A. et al. Femtosecond structural dynamics in VO2 throughout an ultrafast solid-solid section transition. Phys. Rev. Lett. 87, 237401 (2001).
Collet, E. et al. Laser-induced ferroelectric structural order in an natural charge-transfer crystal. Science 300, 612–615 (2003).
Sciaini, G. et al. Digital acceleration of atomic motions and disordering in bismuth. Nature 458, 56–59 (2009).
Buzzi, M., Först, M., Mankowsky, R. & Cavalleri, A. Probing dynamics in quantum supplies with femtosecond X-rays. Nat. Rev. Mater. 3, 299–311 (2018).
Johnson, S. L. et al. Instantly observing squeezed phonon states with femtosecond X-ray diffraction. Phys. Rev. Lett. 102, 175503 (2009).
Cheng, T. Okay. et al. Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, and Ti2O3. Appl. Phys. Lett. 59, 1923–1925 (1991).
Hase, M., Kitajima, M., Constantinescu, A. M. & Petek, H. The start of a quasiparticle in silicon noticed in time-frequency area. Nature 426, 51–54 (2003).
Gamaly, E. G. & Rode, A. V. Physics of ultra-short laser interplay with matter: From phonon excitation to final transformations. Prog. Quantum. Electron. 37, 215–323 (2013).
Recoules, V., Clérouin, J., Zérah, G., Anglade, P. M. & Mazevet, S. Impact of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 055503 (2006).
Grigoryan, N. S., Zier, T., Garcia, M. E. & Zijlstra, E. S. Ultrafast structural phenomena: Concept of phonon frequency adjustments and simulations with code for extremely excited valence electron programs. J. Choose. Soc. Am. B 31, 22–27 (2014).
Fritz, D. M. et al. Ultrafast bond softening in bismuth: Mapping a strong’s interatomic potential with X-rays. Science 315, 633–636 (2007).
Bauerhenne, B. Supplies Interplay with Femtosecond Lasers: Concept and Extremely-large-scale Simulations of Thermal and Nonthermal Phenomena (Springer, 2021).
Varlamova, O., Costache, F., Reif, J. & Bestehorn, M. Self-organized sample formation upon femtosecond laser ablation by circularly polarized gentle. Appl. Surf. Sci. 252, 4702–4706 (2006).
Reif, J., Varlamova, O., Varlamov, S. & Bestehorn, M. The function of uneven excitation in self-organized nanostructure formation upon femtosecond laser ablation. AIP Conf. Proc. 1464, 428–441 (2012).
Bonse, J. & Gräf, S. Ten open questions on laser-induced periodic floor buildings. Nanomaterials 11, 3326 (2021).
Clean, T. B., Brown, S. D., Calhoun, A. W. & Doren, D. J. Neural community fashions of potential power surfaces. J. Chem. Phys. 103, 4129–4137 (1995).
Gassner, H., Probst, M., Lauenstein, A. & Hermansson, Okay. Illustration of intermolecular potential features by neural networks. J. Phys. Chem. A 102, 4596–4605 (1998).
Lorenz, S., Groß, A. & Scheffler, M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem. Phys. Lett. 395, 210–215 (2004).
Manzhos, S., Wang, X., Dawes, R. & Carrington, T. A nested molecule-independent neural community strategy for high-quality potential suits. J. Phys. Chem. A 110, 5295–5304 (2006).
Behler, J. & Parrinello, M. Generalized neural-network illustration of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Behler, J. Atom-centered symmetry features for developing high-dimensional neural community potentials. J. Chem. Phys. 134, 074106 (2011).
Behler, J., Martoňák, R., Donadio, D. & Parrinello, M. Metadynamics simulations of the high-pressure phases of silicon using a high-dimensional neural community potential. Phys. Rev. Lett. 100, 185501 (2008).
Artrith, N. & Behler, J. Excessive-dimensional neural community potentials for metallic surfaces: a prototype examine for copper. Phys. Rev. B 85, 045439 (2012).
Gastegger, M. & Marquetand, P. Excessive-dimensional neural community potentials for natural reactions and an improved coaching algorithm. J. Chem. Concept Comput. 11, 2187–2198 (2015).
Artrith, N., Morawietz, T. & Behler, J. Excessive-dimensional neural-network potentials for multicomponent programs: Functions to zinc oxide. Phys. Rev. B 83, 153101 (2011).
Morawietz, T., Sharma, V. & Behler, J. A neural community potential-energy floor for the water dimer primarily based on environment-dependent atomic energies and costs. J. Chem. Phys. 136, 064103 (2012).
Eckhoff, M. & Behler, J. Excessive-dimensional neural community potentials for magnetic programs utilizing spin-dependent atom-centered symmetry features. Npj Comput. Mater. 7, 170 (2021).
Ghasemi, S. A., Hofstetter, A., Saha, S. & Goedecker, S. Interatomic potentials for ionic programs with density purposeful accuracy primarily based on cost densities obtained by a neural community. Phys. Rev. B 92, 045131 (2015).
Xie, X., Persson, Okay. A. & Small, D. W. Incorporating digital info into machine studying potential power surfaces by way of approaching the ground-state digital power as a perform of atom-based digital populations. J. Chem. Concept Comput. 16, 4256–4270 (2020).
Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural community potential with correct electrostatics together with non-local cost switch. Nat. Commun. 12, 398 (2021).
Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, with out the electrons. Phys. Rev. Lett. 104, 136403 (2010).
Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine studying a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).
Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor evaluation methodology for automated era of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).
Wooden, M. A. & Thompson, A. P. Extending the accuracy of the snap interatomic potential kind. J. Chem. Phys. 148, 241721 (2018).
Shapeev, A. V. Second tensor potentials: a category of systematically improvable interatomic potentials. Multiscale Mannequin. Simul. 14, 1153–1173 (2016).
Podryabinkin, E. V. & Shapeev, A. V. Lively studying of linearly parametrized interatomic potentials. Comput. Mat. Sci. 140, 171–180 (2017).
Schütt, Okay. et al. SchNet: a continuous-filter convolutional neural community for modeling quantum interactions. Adv. Neural Inf. Course of. Syst. 30, 991–1001 (2017).
Barry, M. C., Smart, Okay. E., Kalidindi, S. R. & Kumar, S. Voxelized atomic construction potentials: predicting atomic forces with the accuracy of quantum mechanics utilizing convolutional neural networks. J. Phys. Chem. Lett. 11, 9093–9099 (2020).
Gasteiger, J., Becker, F. & Günnemann, S. Gemnet: Common directional graph neural networks for molecules. Adv. Neural Inf. Course of. Syst. 34, 6790–6802 (2021).
Batzner, S. et al. E (3)-equivariant graph neural networks for data-efficient and correct interatomic potentials. Nat. Commun. 13, 2453 (2022).
Zier, T., Zijlstra, E. S. & Garcia, M. E. Silicon earlier than the bonds break. Appl. Phys. A 117, 1–5 (2014).
Alfé, D. & Gillian, M. J. Trade-correlation power and section diagram of Si. Phys. Rev. B 68, 205212 (2003).
Yamaguchi, Okay. & Itagaki, Okay. Measurement of excessive temperature warmth content material of silicon by drop calorimetry. J. Therm. Anal. Calorim. 69, 1059–1066 (2002).
Jayaraman, A., Klement, W. & Kennedy, G. C. Melting and polymorphism at excessive pressures in some teams iv parts and iii-v compounds with the diamond/zincblende construction. Phys. Rev. 130, 540–547 (1963).
Dorner, F., Sukurma, Z., Dellago, C. & Kresse, G. Melting Si: past density purposeful concept. Phys. Rev. Lett. 121, 195701 (2018).
Pilania, G., Gubernatis, J. E. & Lookman, T. Multi-fidelity machine studying fashions for correct bandgap predictions of solids. Comput. Mater. Sci. 129, 156–163 (2018).
Hendrycks, D. & Gimpel, Okay. Gaussian error linear models (GELUs). Preprint at https://arxiv.org/abs/1606.08415 (2016).
Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Quick and correct deep community studying by exponential linear models (ELUs). Preprint at https://arxiv.org/abs/1511.07289 (2015).
Kingma, D. P. & Ba, J. Adam: a way for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Zijlstra, E. S., Huntemann, N., Kalitsov, A., Garcia, M. E. & Von Barth, U. Optimized Gaussian foundation units for Goedecker-Teter-Hutter pseudopotentials. Mannequin. Simul. Mater. Sci. Eng. 17, 015009 (2009).
Zijlstra, E. S., Kalitsov, A., Zier, T. & Garcia, M. E. Fractional diffusion in silicon. Adv. Mater. 25, 5605–5608 (2013).
Waldecker, L. et al. Coherent and incoherent structural dynamics in laser-excited antimony. Phys. Rev. B 95, 054302 (2017).
Zijlstra, E. S. et al. Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and faulty graphene: an ab initio molecular dynamics examine. Appl. Phys. A 114, 1–9 (2014).
Andersen, H. C. Molecular dynamics simulations at fixed strain and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980).
Anisimov, S. et al. Electron emission from metallic surfaces uncovered to ultrashort laser pulses. Zh. Eksp. Teor. Fiz 66, 375–377 (1974).
Ivanov, D. S. & Zhigilei, L. V. Mixed atomistic-continuum modeling of short-pulse laser melting and disintegration of metallic movies. Phys. Rev. B 68, 064114 (2003).
Sadasivam, S., Chan, M. Okay. Y. & Darancet, P. Concept of thermal rest of electrons in semiconductors. Phys. Rev. Lett. 119, 136602 (2017).
Wu, C. & Zhigilei, L. V. Microscopic mechanisms of laser spallation and ablation of metallic targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014).
Shih, C.-Y. et al. Two mechanisms of nanoparticle era in picosecond laser ablation in liquids: the origin of the bimodal dimension distribution. Nanoscale 10, 6900–6910 (2018).
Ivanov, D. S. et al. Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses close to the injury threshold. Phys. Rev. Appl. 4, 064006 (2015).
Ivanov, D. S. et al. The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of skinny metallic movies. Appl. Phys. A 92, 791–796 (2008).
Abadi, M. et al. Tensorflow: a system for large-scale machine studying. in twelfth USENIX Symposium on Working Methods Design and Implementation 265–283 (2016).
[ad_2]