Home Chemistry On-chip electrocatalytic microdevices | Nature Protocols

On-chip electrocatalytic microdevices | Nature Protocols

On-chip electrocatalytic microdevices | Nature Protocols

[ad_1]

  • Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving power conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shindell, D. & Smith, C. J. Local weather and air-quality advantages of a practical phase-out of fossil fuels. Nature 573, 408–411 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, H. et al. Rising two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bard, A. J., Fan, F. R. F., Kwak, J. & Lev, O. Scanning electrochemical microscopy. Introduction and ideas. Anal. Chem. 61, 132–138 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Courtney, I. A. & Dahn, J. R. Electrochemical and in situ X‐Ray diffraction research of the response of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Iwasita, T. & Nart, F. C. In situ infrared spectroscopy at electrochemical interfaces. Prog. Surf. Sci. 55, 271–340 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Yang, R. et al. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 18, 555–578 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. On-chip electrocatalytic microdevice: an rising platform for increasing the perception into electrochemical processes. Chem. Soc. Rev. 49, 2916–2936 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Excessive phase-purity 1T′-MoS2– and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, M. et al. An on-chip electrical transport spectroscopy strategy for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Boosting the efficiency of single-atom catalysts by way of exterior electrical discipline polarization. Nat. Commun. 13, 3063 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, A. H. et al. The position of alkali steel cations and platinum-surface hydroxyl within the alkaline hydrogen evolution response. Nat. Catal. 5, 923–933 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, Y. et al. Amorphizing noble steel chalcogenide catalysts on the single-layer restrict in direction of hydrogen manufacturing. Nat. Catal. 5, 212–221 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qi, J. et al. On-chip investigation of electrocatalytic oxygen discount response of 2D supplies. Small 18, e2204010 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. Latest progress on two-dimensional supplies. Acta Phys. -Chim. Sin. 37, 2108017–2108010 (2021).

    Article 

    Google Scholar
     

  • Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Power storage: the longer term enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarma, P. V. et al. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano 13, 10448–10455 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, D. et al. Unveiling the layer-dependent catalytic exercise of PtSe2 atomic crystals for the hydrogen evolution response. Angew. Chem. Int. Ed. Engl. 58, 6977–6981 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Unveiling energetic websites for the hydrogen evolution response on monolayer MoS2. Adv. Mater. 29, 1701955 (2017).

    Article 

    Google Scholar
     

  • Wang, W. et al. Preparation of 2D molybdenum phosphide by way of surface-confined atomic substitution. Adv. Mater. 34, 2203220 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Boundary activated hydrogen evolution response on monolayer MoS2. Nat. Commun. 10, 1348 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Superior hydrogen evolution response efficiency in 2H-MoS2 to that of 1T section. Small 15, e1900964 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Area impact enhanced hydrogen evolution response of MoS2 nanosheets. Adv. Mater. 29, 1604464 (2017).

    Article 

    Google Scholar
     

  • Wu, Y. et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett. 19, 7293–7300 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Enhanced efficiency of in-plane transition steel dichalcogenides monolayers by configuring native atomic buildings. Nat. Commun. 11, 2253 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, X. et al. Twin-regulation of defect websites and vertical conduction by spiral area for electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 61, e202112953 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 18, 1098–1104 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Activating the electrocatalysis of MoS2 basal aircraft for hydrogen evolution by way of atomic defect configurations. Small 18, e2200601 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal aircraft websites by vacancies engineering. Nano Res. 14, 4814–4821 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ling, N. et al. Lively hydrogen evolution on the plasma-treated edges of WTe2. APL Mater. 9, 061108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Q. et al. 2D transition steel dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 1907818 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nam, G.-H. et al. In-plane anisotropic properties of 1T′-MoS2 layers. Adv. Mater. 31, 1807764 (2019).

    Article 

    Google Scholar
     

  • He, Y. et al. Engineering grain boundaries on the 2D restrict for the hydrogen evolution response. Nat. Commun. 11, 57 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engstrom, R. C. & Pharr, C. M. Scanning electrochemical microscopy. Anal. Chem. 61, 1099A–1104A (1989).

    Article 
    CAS 

    Google Scholar
     

  • Polcari, D., Dauphin-Ducharme, P. & Mauzeroll, J. Scanning electrochemical microscopy: a complete evaluate of experimental parameters from 1989 to 2015. Chem. Rev. 116, 13234–13278 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariano, R. G. et al. Microstructural origin of regionally enhanced CO2 electroreduction exercise on gold. Nat. Mater. 20, 1000–1006 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Skaanvik, S. A., Xiong, X., Wang, S. & Dong, M. Scanning probe microscopy for electrocatalysis. Matter 4, 3483–3514 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Kinetic research of hydrogen evolution response over strained MoS2 with sulfur vacancies utilizing scanning electrochemical microscopy. J. Am. Chem. Soc. 138, 5123–5129 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X., Wang, C. & Fu, L. Engineering electrocatalytic microcells for two-dimensional supplies. Cell Rep. Phys. Sci. 1, 100190 (2020).

    Article 

    Google Scholar
     

  • Duan, H. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution response: past single-atom catalysis. Angew. Chem. Int. Ed. Engl. 60, 7251–7258 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. (Weinh.) 7, 1901382 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic exercise. ACS Nano 14, 1635–1644 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Unveiling the interfacial results for enhanced hydrogen evolution response on MoS2/WTe2 hybrid buildings. Small 15, e1900078 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Discovering superior basal aircraft energetic two-dimensional catalysts for hydrogen evolution. Mater. As we speak 25, 28–34 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Z. et al. MoS2 Moiré superlattice for hydrogen evolution response. ACS Power Lett. 4, 2830–2835 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Revealing the contribution of particular person elements to hydrogen evolution response catalytic exercise. Adv. Mater. 30, 1706076 (2018).

    Article 

    Google Scholar
     

  • Wang, P. et al. Oxygen evolution response dynamics monitored by a person nanosheet-based digital circuit. Nat. Commun. 8, 645 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Single atomic emptiness catalysis. ACS Nano 13, 9958–9964 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, H. et al. 1T′-MoTe2-based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 1, 396–406 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Voiry, D. et al. The position of digital coupling between substrate and 2D MoS2 nanosheets in electrocatalytic manufacturing of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution by way of the formation of energetic edge websites. Nano Power 49, 634–643 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Filling the hole between heteroatom doping and edge enrichment of 2D electrocatalysts for enhanced hydrogen evolution. ACS Nano 17, 1287–1297 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, M. et al. On-chip in situ monitoring of aggressive interfacial anionic chemisorption as a descriptor for oxygen discount kinetics. ACS Cent. Sci. 4, 590–599 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, H. et al. Self-gating enhanced provider switch in semiconductor electrocatalyst verified in microdevice. Chin. Chem. Lett. 33, 3221–3226 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, C.-H. & Frisbie, C. D. Area impact modulation of outer-sphere electrochemistry at back-gated, ultrathin ZnO electrodes. J. Am. Chem. Soc. 138, 7220–7223 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, M. et al. Area-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution response. Nano Lett. 17, 4109–4115 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. The essential position of electrolyte gating on the hydrogen evolution efficiency of monolayer MoS2. Nano Lett. 19, 8118–8124 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Udyavara, S., Neurock, M. & Frisbie, C. D. Area impact modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett. 19, 6118–6123 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X. et al. Twin self-built gating boosts the hydrogen evolution response. Adv. Mater. 34, 2202479 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Zhang, Z., Mao, Y. & Wang, X. Two-dimensional nonlayered supplies for electrocatalysis. Power Environ. Sci. 13, 3993–4016 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cummins, D. R. et al. Environment friendly hydrogen evolution in transition steel dichalcogenides by way of a easy one-step hydrazine response. Nat. Commun. 7, 11857 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, M. et al. Nanoelectronic investigation reveals the electrochemical foundation {of electrical} conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, B. et al. Silver nanoparticles increase charge-extraction effectivity in Shewanella microbial gas cells. Science 373, 1336–1340 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lianos, P. Evaluation of current developments in photoelectrocatalytic conversion of photo voltaic power to electrical energy and hydrogen. Appl. Catal. B 210, 235–254 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Hidden emptiness profit in monolayer 2D semiconductors. Adv. Mater. 33, 2007051 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution by way of the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Edge-enriched 2D MoS2 skinny movies grown by chemical vapor deposition for enhanced catalytic efficiency. ACS Catal. 7, 877–886 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. Controllable progress and switch of monolayer MoS2 on Au foils and its potential software in hydrogen evolution response. ACS Nano 8, 10196–10204 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Ammonium salts: new synergistic additive for chemical vapor deposition progress of MoS2. J. Phys. Chem. Lett. 12, 12384–12390 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, Ok. Perception on Tafel slopes from a microkinetic evaluation of aqueous electrocatalysis for power conversion. Sci. Rep. 5, 13801 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Strategies: Fundamentals and Purposes (John Wiley & Sons, 2022).

  • Bond, A. M., Oldham, Ok. B. & Zoski, C. G. Regular-state voltammetry. Anal. Chim. Acta 216, 177–230 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R. et al. Use of platinum because the counter electrode to review the exercise of nonprecious steel catalysts for the hydrogen evolution response. ACS Power Lett. 2, 1070–1075 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, G. et al. Figuring out the hydronium pKα at platinum surfaces and the impact on pH-dependent hydrogen evolution response kinetics. Proc. Natl Acad. Sci. USA 119, e2208187119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here