[ad_1]
Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving power conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).
Shindell, D. & Smith, C. J. Local weather and air-quality advantages of a practical phase-out of fossil fuels. Nature 573, 408–411 (2019).
Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).
Jin, H. et al. Rising two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).
Bard, A. J., Fan, F. R. F., Kwak, J. & Lev, O. Scanning electrochemical microscopy. Introduction and ideas. Anal. Chem. 61, 132–138 (1989).
Courtney, I. A. & Dahn, J. R. Electrochemical and in situ X‐Ray diffraction research of the response of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).
Iwasita, T. & Nart, F. C. In situ infrared spectroscopy at electrochemical interfaces. Prog. Surf. Sci. 55, 271–340 (1997).
Yang, R. et al. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 18, 555–578 (2023).
Yang, H. et al. On-chip electrocatalytic microdevice: an rising platform for increasing the perception into electrochemical processes. Chem. Soc. Rev. 49, 2916–2936 (2020).
Yu, Y. et al. Excessive phase-purity 1T′-MoS2– and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).
Ding, M. et al. An on-chip electrical transport spectroscopy strategy for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015).
Pan, Y. et al. Boosting the efficiency of single-atom catalysts by way of exterior electrical discipline polarization. Nat. Commun. 13, 3063 (2022).
Shah, A. H. et al. The position of alkali steel cations and platinum-surface hydroxyl within the alkaline hydrogen evolution response. Nat. Catal. 5, 923–933 (2022).
He, Y. et al. Amorphizing noble steel chalcogenide catalysts on the single-layer restrict in direction of hydrogen manufacturing. Nat. Catal. 5, 212–221 (2022).
Qi, J. et al. On-chip investigation of electrocatalytic oxygen discount response of 2D supplies. Small 18, e2204010 (2022).
Cheng, C. et al. Latest progress on two-dimensional supplies. Acta Phys. -Chim. Sin. 37, 2108017–2108010 (2021).
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Power storage: the longer term enabled by nanomaterials. Science 366, eaan8285 (2019).
Sarma, P. V. et al. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano 13, 10448–10455 (2019).
Hu, D. et al. Unveiling the layer-dependent catalytic exercise of PtSe2 atomic crystals for the hydrogen evolution response. Angew. Chem. Int. Ed. Engl. 58, 6977–6981 (2019).
Zhang, J. et al. Unveiling energetic websites for the hydrogen evolution response on monolayer MoS2. Adv. Mater. 29, 1701955 (2017).
Wang, W. et al. Preparation of 2D molybdenum phosphide by way of surface-confined atomic substitution. Adv. Mater. 34, 2203220 (2022).
Zhu, J. et al. Boundary activated hydrogen evolution response on monolayer MoS2. Nat. Commun. 10, 1348 (2019).
Zhang, W. et al. Superior hydrogen evolution response efficiency in 2H-MoS2 to that of 1T section. Small 15, e1900964 (2019).
Wang, J. et al. Area impact enhanced hydrogen evolution response of MoS2 nanosheets. Adv. Mater. 29, 1604464 (2017).
Wu, Y. et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett. 19, 7293–7300 (2019).
Zhou, Y. et al. Enhanced efficiency of in-plane transition steel dichalcogenides monolayers by configuring native atomic buildings. Nat. Commun. 11, 2253 (2020).
Tong, X. et al. Twin-regulation of defect websites and vertical conduction by spiral area for electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 61, e202112953 (2022).
He, Y. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 18, 1098–1104 (2019).
Liu, X. et al. Activating the electrocatalysis of MoS2 basal aircraft for hydrogen evolution by way of atomic defect configurations. Small 18, e2200601 (2022).
Yang, H. et al. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal aircraft websites by vacancies engineering. Nano Res. 14, 4814–4821 (2021).
Ling, N. et al. Lively hydrogen evolution on the plasma-treated edges of WTe2. APL Mater. 9, 061108 (2021).
Fu, Q. et al. 2D transition steel dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 1907818 (2021).
Nam, G.-H. et al. In-plane anisotropic properties of 1T′-MoS2 layers. Adv. Mater. 31, 1807764 (2019).
He, Y. et al. Engineering grain boundaries on the 2D restrict for the hydrogen evolution response. Nat. Commun. 11, 57 (2020).
Engstrom, R. C. & Pharr, C. M. Scanning electrochemical microscopy. Anal. Chem. 61, 1099A–1104A (1989).
Polcari, D., Dauphin-Ducharme, P. & Mauzeroll, J. Scanning electrochemical microscopy: a complete evaluate of experimental parameters from 1989 to 2015. Chem. Rev. 116, 13234–13278 (2016).
Mariano, R. G. et al. Microstructural origin of regionally enhanced CO2 electroreduction exercise on gold. Nat. Mater. 20, 1000–1006 (2021).
Wang, Y., Skaanvik, S. A., Xiong, X., Wang, S. & Dong, M. Scanning probe microscopy for electrocatalysis. Matter 4, 3483–3514 (2021).
Li, H. et al. Kinetic research of hydrogen evolution response over strained MoS2 with sulfur vacancies utilizing scanning electrochemical microscopy. J. Am. Chem. Soc. 138, 5123–5129 (2016).
Zhu, X., Wang, C. & Fu, L. Engineering electrocatalytic microcells for two-dimensional supplies. Cell Rep. Phys. Sci. 1, 100190 (2020).
Duan, H. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution response: past single-atom catalysis. Angew. Chem. Int. Ed. Engl. 60, 7251–7258 (2021).
Wang, Z. et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. (Weinh.) 7, 1901382 (2020).
Guo, Y. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic exercise. ACS Nano 14, 1635–1644 (2020).
Zhou, Y. et al. Unveiling the interfacial results for enhanced hydrogen evolution response on MoS2/WTe2 hybrid buildings. Small 15, e1900078 (2019).
Zhang, J. et al. Discovering superior basal aircraft energetic two-dimensional catalysts for hydrogen evolution. Mater. As we speak 25, 28–34 (2019).
Jiang, Z. et al. MoS2 Moiré superlattice for hydrogen evolution response. ACS Power Lett. 4, 2830–2835 (2019).
Zhou, Y. et al. Revealing the contribution of particular person elements to hydrogen evolution response catalytic exercise. Adv. Mater. 30, 1706076 (2018).
Wang, P. et al. Oxygen evolution response dynamics monitored by a person nanosheet-based digital circuit. Nat. Commun. 8, 645 (2017).
Yang, J. et al. Single atomic emptiness catalysis. ACS Nano 13, 9958–9964 (2019).
You, H. et al. 1T′-MoTe2-based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 1, 396–406 (2019).
Voiry, D. et al. The position of digital coupling between substrate and 2D MoS2 nanosheets in electrocatalytic manufacturing of hydrogen. Nat. Mater. 15, 1003–1009 (2016).
Wang, Z. et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution by way of the formation of energetic edge websites. Nano Power 49, 634–643 (2018).
Wang, W. et al. Filling the hole between heteroatom doping and edge enrichment of 2D electrocatalysts for enhanced hydrogen evolution. ACS Nano 17, 1287–1297 (2023).
Ding, M. et al. On-chip in situ monitoring of aggressive interfacial anionic chemisorption as a descriptor for oxygen discount kinetics. ACS Cent. Sci. 4, 590–599 (2018).
Xiang, H. et al. Self-gating enhanced provider switch in semiconductor electrocatalyst verified in microdevice. Chin. Chem. Lett. 33, 3221–3226 (2022).
Kim, C.-H. & Frisbie, C. D. Area impact modulation of outer-sphere electrochemistry at back-gated, ultrathin ZnO electrodes. J. Am. Chem. Soc. 138, 7220–7223 (2016).
Yan, M. et al. Area-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution response. Nano Lett. 17, 4109–4115 (2017).
Liu, X. et al. The essential position of electrolyte gating on the hydrogen evolution efficiency of monolayer MoS2. Nano Lett. 19, 8118–8124 (2019).
Wang, Y., Udyavara, S., Neurock, M. & Frisbie, C. D. Area impact modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett. 19, 6118–6123 (2019).
Zhu, X. et al. Twin self-built gating boosts the hydrogen evolution response. Adv. Mater. 34, 2202479 (2022).
He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).
Wang, Y., Zhang, Z., Mao, Y. & Wang, X. Two-dimensional nonlayered supplies for electrocatalysis. Power Environ. Sci. 13, 3993–4016 (2020).
Cummins, D. R. et al. Environment friendly hydrogen evolution in transition steel dichalcogenides by way of a easy one-step hydrazine response. Nat. Commun. 7, 11857 (2016).
Ding, M. et al. Nanoelectronic investigation reveals the electrochemical foundation {of electrical} conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).
Cao, B. et al. Silver nanoparticles increase charge-extraction effectivity in Shewanella microbial gas cells. Science 373, 1336–1340 (2021).
Lianos, P. Evaluation of current developments in photoelectrocatalytic conversion of photo voltaic power to electrical energy and hydrogen. Appl. Catal. B 210, 235–254 (2017).
Zhang, X. et al. Hidden emptiness profit in monolayer 2D semiconductors. Adv. Mater. 33, 2007051 (2021).
Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution by way of the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).
Li, S. et al. Edge-enriched 2D MoS2 skinny movies grown by chemical vapor deposition for enhanced catalytic efficiency. ACS Catal. 7, 877–886 (2017).
Shi, J. et al. Controllable progress and switch of monolayer MoS2 on Au foils and its potential software in hydrogen evolution response. ACS Nano 8, 10196–10204 (2014).
Li, G. et al. Ammonium salts: new synergistic additive for chemical vapor deposition progress of MoS2. J. Phys. Chem. Lett. 12, 12384–12390 (2021).
Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, Ok. Perception on Tafel slopes from a microkinetic evaluation of aqueous electrocatalysis for power conversion. Sci. Rep. 5, 13801 (2015).
Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).
Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Strategies: Fundamentals and Purposes (John Wiley & Sons, 2022).
Bond, A. M., Oldham, Ok. B. & Zoski, C. G. Regular-state voltammetry. Anal. Chim. Acta 216, 177–230 (1989).
Chen, R. et al. Use of platinum because the counter electrode to review the exercise of nonprecious steel catalysts for the hydrogen evolution response. ACS Power Lett. 2, 1070–1075 (2017).
Zhong, G. et al. Figuring out the hydronium pKα at platinum surfaces and the impact on pH-dependent hydrogen evolution response kinetics. Proc. Natl Acad. Sci. USA 119, e2208187119 (2022).
[ad_2]