Home Chemistry Polysilyne chains bridged with beryllium result in flat 2D Dirac supplies

Polysilyne chains bridged with beryllium result in flat 2D Dirac supplies

Polysilyne chains bridged with beryllium result in flat 2D Dirac supplies

[ad_1]

  • Tune, X. et al. Intriguing one-dimensional digital conduct in rising two-dimensional supplies. Nano Res. 14, 3810–3819 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bykov, M. et al. Excessive-pressure synthesis of Dirac supplies: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett. 126, 175501 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wang, B. & Frapper, G. Prediction of two-dimensional Cu2C with polyacetylene-like motifs and Dirac nodal line. Phys. Rev. Mater. 5, 034003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chiang, C. Okay. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Shimomura, Okay., Ikai, T., Kanoh, S., Yashima, E. & Maeda, Okay. Switchable enantioseparation primarily based on macromolecular reminiscence of a helical polyacetylene within the stable state. Nat. Chem. 6, 429–434 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swager, T. M. fiftieth Anniversary perspective: Conducting/semiconducting conjugated polymers. A private perspective on the previous and the long run. Macromolecules 50, 4867–4886 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Hudson, B. S. Polyacetylene: Fable and actuality. Supplies 11, 242 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hernangómez-Pérez, D., Gunasekaran, S., Venkataraman, L. & Evers, F. Solitonics with polyacetylenes. Nano Lett. 20, 2615–2619 (2020).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Miao, Z. et al. Cyclic polyacetylene. Nat. Chem. 13, 792–799 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jutzi, P. Secure techniques with a triple bond to silicon or its homologues: One other problem. Angew. Chem. Int. Ed. 39, 3797–3800 (2000).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • West, R. A number of bonds to silicon: 20 years later. Polyhedron 21, 467–472 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Weidenbruch, M. Triple bonds of the heavy main-group components: Acetylene and alkylidyne analogues of group 14. Angew. Chem. Int. Ed. 42, 2222–2224 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Tokitoh, N. New progress within the chemistry of steady metallaaromatic compounds of heavier group 14 components. Acc. Chem. Res. 37, 86–94 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuo, T. & Hayakawa, N. π-Electron techniques containing Si=Si double bonds. Sci. Technol. Adv. Mater. 19, 108–129 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brumfiel, G. Sticky downside snares marvel materials. Nature 495, 152–153 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a steady compound containing a silicon–silicon double bond. Science 214, 1343–1344 (1981).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Weidenbruch, M., Willms, S., Saak, W. & Henkel, G. Hexaaryltetrasilabuta-1,3-diene: A molecule with conjugated Si–Si double bonds. Angew. Chem. Int. Ed. Engl. 36, 2503–2504 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Uchiyama, Okay., Nagendran, S., Ishida, S., Iwamoto, T. & Kira, M. Thermal and photochemical cleavage of Si=Si double bond in tetrasila-1,3-diene. J. Am. Chem. Soc. 129, 10638–10639 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, M. & Kawazoe, Y. Metallic-substituted disilynes with linear varieties. Organometallics 27, 4829–4832 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, M. & Kawazoe, Y. Theoretical examine on planar anionic polysilicon chains and cyclic Si6 anions with D6h symmetry. Organometallics 24, 2433–2440 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, M. Polyanionic hexagons: X6n– (X = Si, Ge). Symmetry 2, 1745–1762 (2010).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ichinohe, M., Sanuki, Okay., Inoue, S. & Sekiguchi, A. Disilenyllithium from tetrasila-1,3-butadiene: A silicon analogue of a vinyllithium. Organometallics 23, 3088–3090 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, M. Flat constructing blocks for flat silicene. Sci. Rep. 7, 10855 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Takahashi, M. Flat zigzag silicene nanoribbon with Be bridge. ACS Omega 6, 12099–12104 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac supplies. Adv. Phys. 63, 1–76 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Wang, J., Deng, S., Liu, Z. & Liu, Z. The uncommon two-dimensional supplies with Dirac cones. Natl. Sci. Rev. 2, 22–39 (2015).

    Article 

    Google Scholar
     

  • Vafek, O. & Vishwanath, A. Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Chen, X., Esteban-Puyuelo, R., Li, L. & Sanyal, B. Structural part transition in monolayer gold(I) telluride: From a room-temperature topological insulator to an auxetic semiconductor. Phys. Rev. B 103, 075429 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Le Web page, Y. & Saxe, P. Symmetry-general least-squares extraction of elastic information for strained supplies from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Sen, S. & Chakrabarti, S. Tomonaga–Luttinger liquid characteristic in sodium-doped quasi-one-dimensional trans-polyacetylene chain. Phys. E 40, 2736–2741 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kainaris, N. & Carr, S. T. Emergent topological properties in interacting one-dimensional techniques with spin–orbit coupling. Phys. Rev. B 92, 035139 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sato, Y. et al. Robust electron–electron interactions of a Tomonaga–Luttinger liquid noticed in InAs quantum wires. Phys. Rev. B 99, 155304 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kara, A. et al. A evaluation on silicone—New candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Jose, D. & Datta, A. Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639–24648 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, Okay. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental remark of the quantum Corridor impact and Berry’s part in graphene. Nature 438, 201–204 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Goerbig, M. O., Fuchs, J.-N., Montambaux, G. & Piéchon, F. Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF)2I3. Phys. Rev. B 78, 045415 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lu, H.-Y. et al. Tilted anisotropic Dirac cones in partially hydrogenated graphene. Phys. Rev. B 94, 195423 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Y., Li, X., Liu, J., Zhang, C. & Wang, Q. A brand new anisotropic Dirac cone materials: A B2S honeycomb monolayer. J. Phys. Chem. Lett. 9, 1815–1920 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katayama, S., Kobayashi, A. & Suzumura, Y. Strain-induced zero-gap semiconducting state in natural conductor α-(BEDT-TTF)2I3 salt. J. Phys. Soc. Jpn. 75, 054705 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hirata, M. et al. Remark of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an natural conductor. Nat. Commun. 7, 12666 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Park, J. et al. Anisotropic Dirac fermions in a Bi sq. web of SrMnBi2. Phys. Rev. Lett. 107, 126402 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Nguyen, V. H. & Charlier, J.-C. Klein tunneling and electron optics in Dirac–Weyl fermion techniques with tilted vitality dispersion. Phys. Rev. B 97, 235113 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Chan, C.-Okay., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104(R) (2017).

    Article 
    ADS 

    Google Scholar
     

  • Van Hove, L. The prevalence of singularities within the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953).

    Article 
    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Bassani, G. F. & Parravicini, G. P. Digital States and Optical Transitions in Solids (Pergamon Press, 1975).

  • Nair, R. R. et al. Twin origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Cadelano, E. & Colombo, L. Impact of hydrogen protection on the Younger’s modulus of graphene. Phys. Rev. B 85, 245434 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cadelano, E., Palla, P. L., Giordano, S. & Colombo, L. Elastic properties of hydrogenated graphene. Phys. Rev. B 82, 235414 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chen, X., Wang, D., Liu, X., Li, L. & Sanyal, B. Two-dimensional square-A2B (A = Cu, Ag, Au, and B = S, Se): Auxetic semiconductors with excessive service mobilities and unusually low lattice thermal conductivities. J. Phys. Chem. Lett. 11, 2925–2933 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, Y. & Wang, Y. Density purposeful principle examine of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The assorted buckled constructions and versatile digital properties. J. Phys. Chem. C 117, 18266–18278 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic power of monolayer graphene. Science 321, 385–388 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nika, D. L., Pokatilov, E. P., Askerov, A. S. & Balandin, A. A. Phonon thermal conduction in graphene: Position of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, D. R. Supplies choice tips for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67–74 (2003).

    Article 

    Google Scholar
     

  • Clark, S. J. et al. First ideas strategies utilizing CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Refson, Okay., Tulip, P. R. & Clark, S. J. Variational density-functional perturbation principle for dielectrics and lattice dynamics. Phys. Rev. B 73, 155114 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: The canonical ensemble through steady dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P. et al. Restoring the density-gradient growth for change in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here