[ad_1]
Tune, X. et al. Intriguing one-dimensional digital conduct in rising two-dimensional supplies. Nano Res. 14, 3810–3819 (2021).
Bykov, M. et al. Excessive-pressure synthesis of Dirac supplies: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett. 126, 175501 (2021).
Wang, B. & Frapper, G. Prediction of two-dimensional Cu2C with polyacetylene-like motifs and Dirac nodal line. Phys. Rev. Mater. 5, 034003 (2021).
Chiang, C. Okay. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).
Shimomura, Okay., Ikai, T., Kanoh, S., Yashima, E. & Maeda, Okay. Switchable enantioseparation primarily based on macromolecular reminiscence of a helical polyacetylene within the stable state. Nat. Chem. 6, 429–434 (2014).
Swager, T. M. fiftieth Anniversary perspective: Conducting/semiconducting conjugated polymers. A private perspective on the previous and the long run. Macromolecules 50, 4867–4886 (2017).
Hudson, B. S. Polyacetylene: Fable and actuality. Supplies 11, 242 (2018).
Hernangómez-Pérez, D., Gunasekaran, S., Venkataraman, L. & Evers, F. Solitonics with polyacetylenes. Nano Lett. 20, 2615–2619 (2020).
Miao, Z. et al. Cyclic polyacetylene. Nat. Chem. 13, 792–799 (2021).
Jutzi, P. Secure techniques with a triple bond to silicon or its homologues: One other problem. Angew. Chem. Int. Ed. 39, 3797–3800 (2000).
West, R. A number of bonds to silicon: 20 years later. Polyhedron 21, 467–472 (2002).
Weidenbruch, M. Triple bonds of the heavy main-group components: Acetylene and alkylidyne analogues of group 14. Angew. Chem. Int. Ed. 42, 2222–2224 (2003).
Tokitoh, N. New progress within the chemistry of steady metallaaromatic compounds of heavier group 14 components. Acc. Chem. Res. 37, 86–94 (2004).
Matsuo, T. & Hayakawa, N. π-Electron techniques containing Si=Si double bonds. Sci. Technol. Adv. Mater. 19, 108–129 (2018).
Brumfiel, G. Sticky downside snares marvel materials. Nature 495, 152–153 (2013).
West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a steady compound containing a silicon–silicon double bond. Science 214, 1343–1344 (1981).
Weidenbruch, M., Willms, S., Saak, W. & Henkel, G. Hexaaryltetrasilabuta-1,3-diene: A molecule with conjugated Si–Si double bonds. Angew. Chem. Int. Ed. Engl. 36, 2503–2504 (1997).
Uchiyama, Okay., Nagendran, S., Ishida, S., Iwamoto, T. & Kira, M. Thermal and photochemical cleavage of Si=Si double bond in tetrasila-1,3-diene. J. Am. Chem. Soc. 129, 10638–10639 (2007).
Takahashi, M. & Kawazoe, Y. Metallic-substituted disilynes with linear varieties. Organometallics 27, 4829–4832 (2008).
Takahashi, M. & Kawazoe, Y. Theoretical examine on planar anionic polysilicon chains and cyclic Si6 anions with D6h symmetry. Organometallics 24, 2433–2440 (2005).
Takahashi, M. Polyanionic hexagons: X6n– (X = Si, Ge). Symmetry 2, 1745–1762 (2010).
Ichinohe, M., Sanuki, Okay., Inoue, S. & Sekiguchi, A. Disilenyllithium from tetrasila-1,3-butadiene: A silicon analogue of a vinyllithium. Organometallics 23, 3088–3090 (2004).
Takahashi, M. Flat constructing blocks for flat silicene. Sci. Rep. 7, 10855 (2017).
Takahashi, M. Flat zigzag silicene nanoribbon with Be bridge. ACS Omega 6, 12099–12104 (2021).
Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac supplies. Adv. Phys. 63, 1–76 (2014).
Wang, J., Deng, S., Liu, Z. & Liu, Z. The uncommon two-dimensional supplies with Dirac cones. Natl. Sci. Rev. 2, 22–39 (2015).
Vafek, O. & Vishwanath, A. Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).
Chen, X., Esteban-Puyuelo, R., Li, L. & Sanyal, B. Structural part transition in monolayer gold(I) telluride: From a room-temperature topological insulator to an auxetic semiconductor. Phys. Rev. B 103, 075429 (2021).
Le Web page, Y. & Saxe, P. Symmetry-general least-squares extraction of elastic information for strained supplies from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).
Sen, S. & Chakrabarti, S. Tomonaga–Luttinger liquid characteristic in sodium-doped quasi-one-dimensional trans-polyacetylene chain. Phys. E 40, 2736–2741 (2008).
Kainaris, N. & Carr, S. T. Emergent topological properties in interacting one-dimensional techniques with spin–orbit coupling. Phys. Rev. B 92, 035139 (2015).
Sato, Y. et al. Robust electron–electron interactions of a Tomonaga–Luttinger liquid noticed in InAs quantum wires. Phys. Rev. B 99, 155304 (2019).
Kara, A. et al. A evaluation on silicone—New candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012).
Jose, D. & Datta, A. Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639–24648 (2012).
Novoselov, Okay. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental remark of the quantum Corridor impact and Berry’s part in graphene. Nature 438, 201–204 (2005).
Goerbig, M. O., Fuchs, J.-N., Montambaux, G. & Piéchon, F. Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF)2I3. Phys. Rev. B 78, 045415 (2008).
Lu, H.-Y. et al. Tilted anisotropic Dirac cones in partially hydrogenated graphene. Phys. Rev. B 94, 195423 (2016).
Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).
Zhao, Y., Li, X., Liu, J., Zhang, C. & Wang, Q. A brand new anisotropic Dirac cone materials: A B2S honeycomb monolayer. J. Phys. Chem. Lett. 9, 1815–1920 (2018).
Katayama, S., Kobayashi, A. & Suzumura, Y. Strain-induced zero-gap semiconducting state in natural conductor α-(BEDT-TTF)2I3 salt. J. Phys. Soc. Jpn. 75, 054705 (2006).
Hirata, M. et al. Remark of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an natural conductor. Nat. Commun. 7, 12666 (2016).
Park, J. et al. Anisotropic Dirac fermions in a Bi sq. web of SrMnBi2. Phys. Rev. Lett. 107, 126402 (2011).
Nguyen, V. H. & Charlier, J.-C. Klein tunneling and electron optics in Dirac–Weyl fermion techniques with tilted vitality dispersion. Phys. Rev. B 97, 235113 (2018).
Chan, C.-Okay., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104(R) (2017).
Van Hove, L. The prevalence of singularities within the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953).
Bassani, G. F. & Parravicini, G. P. Digital States and Optical Transitions in Solids (Pergamon Press, 1975).
Nair, R. R. et al. Twin origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013).
Cadelano, E. & Colombo, L. Impact of hydrogen protection on the Younger’s modulus of graphene. Phys. Rev. B 85, 245434 (2012).
Cadelano, E., Palla, P. L., Giordano, S. & Colombo, L. Elastic properties of hydrogenated graphene. Phys. Rev. B 82, 235414 (2010).
Chen, X., Wang, D., Liu, X., Li, L. & Sanyal, B. Two-dimensional square-A2B (A = Cu, Ag, Au, and B = S, Se): Auxetic semiconductors with excessive service mobilities and unusually low lattice thermal conductivities. J. Phys. Chem. Lett. 11, 2925–2933 (2020).
Ding, Y. & Wang, Y. Density purposeful principle examine of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The assorted buckled constructions and versatile digital properties. J. Phys. Chem. C 117, 18266–18278 (2013).
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic power of monolayer graphene. Science 321, 385–388 (2008).
Nika, D. L., Pokatilov, E. P., Askerov, A. S. & Balandin, A. A. Phonon thermal conduction in graphene: Position of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009).
Clarke, D. R. Supplies choice tips for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67–74 (2003).
Clark, S. J. et al. First ideas strategies utilizing CASTEP. Z. Kristallogr. 220, 567–570 (2005).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Refson, Okay., Tulip, P. R. & Clark, S. J. Variational density-functional perturbation principle for dielectrics and lattice dynamics. Phys. Rev. B 73, 155114 (2006).
Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: The canonical ensemble through steady dynamics. J. Chem. Phys. 97, 2635–2643 (1992).
Perdew, J. P. et al. Restoring the density-gradient growth for change in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
[ad_2]