[ad_1]
Huels, M. A., Boudaïffa, B., Cloutier, P., Looking, D. & Sanche, L. Single, double, and a number of double strand breaks induced in DNA by 3–100 eV electrons. J. Am. Chem. Soc. 125, 4467–4477 (2003).
Sanche, L. Past radical considering. Nature 461, 358—359 (2009).
Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular harm induced by ionizing radiation: the direct and oblique results of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).
Bertini, I., Grey, H. B., Stiefel, E. I. & Valentine, J. S. Organic Inorganic Chemistry (College Science Books, 2007).
Stumpf, V., Gokhberg, Okay. & Cederbaum, L. S. The function of steel ions in X-ray-induced photochemistry. Nat. Chem. 8, 237–241 (2016).
Garrett, B. C. et al. Position of water in electron-initiated processes and radical chemistry: points and scientific advances. Chem. Rev. 105, 355—390 (2005).
Loh, Z.-H. et al. Statement of the quickest chemical processes within the radiolysis of water. Science 367, 179–182 (2020).
Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Large intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778 (1997).
Zobeley, J., Santra, R. & Cederbaum, L. S. Digital decay in weakly sure heteroclusters: vitality switch versus electron switch. J. Chem. Phys. 115, 5076 (2001).
Jahnke, T. et al. Experimental statement of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004).
Jahnke, T. et al. Ultrafast vitality switch between water molecules. Nat. Phys. 6, 139–142 (2010).
Havermeier, T. et al. Interatomic Coulombic decay following photoionization of the helium dimer: statement of vibrational construction. Phys. Rev. Lett. 104, 133401 (2010).
Morishita, Y. et al. Experimental proof of interatomic Coulombic decay from the Auger ultimate states in argon dimers. Phys. Rev. Lett. 96, 243402 (2006).
Gokhberg, Okay., Kolorenč, P., Kuleff, A. I. & Cederbaum, L. S. Web site- and energy-selective slow-electron manufacturing by means of intermolecular Coulombic decay. Nature 505, 661–663 (2014).
Trinter, F. et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature 505, 664–666 (2014).
Marburger, S., Kugeler, O., Hergenhahn, U. & Möller, T. Experimental proof for interatomic Coulombic decay in Ne clusters. Phys. Rev. Lett. 90, 203401 (2003).
Mucke, M., Arion, T., Förstel, M., Lischke, T. & Hergenhahn, U. Competitors of inelastic electron scattering and interatomic Coulombic decay in Ne clusters. J. Electron Spectrosc. Relat. Phenom. 200, 232–238 (2015).
Mucke, M. et al. A hitherto unrecognized supply of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).
Öhrwall, G. et al. Cost dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010).
Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).
Thürmer, S. et al. On the character and origin of dicationic, charge-separated species fashioned in liquid water on X-ray irradiation. Nat. Chem. 5, 590–596 (2013).
Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interplay between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008).
Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).
Harbach, P. H. P., Schneider, M., Faraji, S. & Dreuw, A. Intermolecular Coulombic decay in biology: the preliminary electron detachment from FADH− in DNA photolyases. J. Phys. Chem. Lett. 4, 943–949 (2013).
Sakai, Okay. et al. Electron-transfer-mediated decay and interatomic Coulombic decay from the triply ionized states in argon dimers. Phys. Rev. Lett. 106, 033401 (2011).
Förstel, M., Mucke, M., Arion, T., Bradshaw, A. M. & Hergenhahn, U. Autoionization mediated by electron switch. Phys. Rev. Lett. 106, 033402 (2011).
Unger, I. et al. Statement of electron-transfer-mediated decay in aqueous resolution. Nat. Chem. 9, 708–714 (2017).
Pohl, M. N. et al. Sensitivity of electron switch mediated decay to ion pairing. J. Phys. Chem. B 121, 7709–7714 (2017).
Stumpf, V., Kolorenč, P., Gokhberg, Okay. & Cederbaum, L. S. Environment friendly pathway to neutralization of multiply charged ions produced in Auger processes. Phys. Rev. Lett. 110, 258302 (2013).
You, D. et al. Cost switch to ground-state ions produces free electrons. Nat. Commun. 8, 14277 (2017).
Buth, C., Santra, R. & Cederbaum, L. S. Impression of interatomic digital decay processes on Xe 4d gap decay within the xenon fluorides. J. Chem. Phys. 119, 10575 (2003).
Fasshauer, E., Förstel, M., Mucke, M., Arion, T. & Hergenhahn, U. Theoretical and experimental investigation of electron switch mediated decay in ArKr clusters. Chem. Phys. 482, 226–238 (2017).
Krause, M. O. Atomic radiative and radiationless yields for Okay and L shells. J. Phys. Chem. Ref. Information 8, 307 (1979).
Gopakumar, G. et al. Probing aqueous ions with non-local Auger rest. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).
Körber, H. & Mehlhorn, W. Das Okay-Auger-Spektrum von Neon. Z. Phys. 191, 217–230 (1966).
Leväsalmi, M., Aksela, H. & Aksela, S. Satellite tv for pc construction within the KLL spectrum of neon. Phys. Scr. T41, 119 (1992).
Roos, A. H. et al. Abundance of molecular triple ionization by double Auger decay. Sci. Rep. 8, 16405 (2018).
Hans, A. et al. Direct proof for radiative cost switch after inner-shell excitation and ionization of huge clusters. New J. Phys. 20, 012001 (2018).
Malerz, S. et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous options. Phys. Chem. Chem. Phys. 23, 8246–8260 (2021).
Besley, N. A. Modeling of the spectroscopy of core electrons with density useful concept. WIREs Comput. Mol. Sci. 11, e1527 (2021).
Müller, I. B. & Cederbaum, L. S. Ionization and double ionization of small water clusters. J. Chem. Phys. 125, 204305 (2006).
Trzhaskovskaya, M. B., Nefedov, V. I. & Yarzhemsky, V. G. Photoelectron angular distribution parameters for components Z=1 to Z=54 within the photoelectron vitality vary 100–5000 eV. At. Information Nucl. Information Tables 77, 97–159 (2001).
Slavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-transfer mediated enhancement of nonlocal digital rest processes in X ray irradiated liquid water. J. Am. Chem. Soc. 136, 18170–18176 (2014).
Thürmer, S. et al. Photoelectron angular distributions from liquid water: results of electron scattering. Phys. Rev. Lett. 111, 173005 (2013).
Suzuki, Y.-I., Nishizawa, Okay., Kurahashi, N. & Suzuki, T. Efficient attenuation size of an electron in liquid water between 10 and 600 eV. Phys. Rev. E 90, 010302(R) (2014).
Signorell, R. & Winter, B. Photoionization of the aqueous part: clusters, droplets and liquid jets. Phys. Chem. Chem. Phys. 24, 13438–13460 (2022).
Crowell, R. A., Lian, R., Sauer Jr, M. C., Oulianov, D. A. & Shkrob, I. A. Geminate recombination of hydroxyl radicals generated in 200 nm photodissociation of aqueous hydrogen peroxide. Chem. Phys. Lett. 383, 481–485 (2004).
Teolis, B. D., Plainaki, C., Cassidy, T. A. & Raut, U. Water ice radiolytic O2, H2, and H2O2 yields for any projectile species, vitality, or temperature: a mannequin for icy astrophysical our bodies. J. Geophys. Res. Planets 122, 1996–2012 (2017).
Krause, W., Jordan, A., Scholz, R. & Jimenez, J.-L. M. Iodinated nitroimidazoles as radiosensitizers. Anticancer Res. 25, 2145–2152 (2005).
Kobayashi, Okay., Usami, N., Porcel, E., Lacombe, S. & Le Sech, C. Enhancement of radiation impact by heavy components. Mutat. Res. Rev. Mutat. Res. 704, 123—131 (2010).
Matsumoto, Okay. et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: implications for the Auger remedy. Sci. Rep. 9, 13275 (2019).
Ku, A., Facca, V. J., Cai, Z. & Reilly, R. M. Auger electrons for most cancers remedy—a evaluation. EJNMMI Radiopharm. Chem. 4, 27 (2019).
Higashi, Y. et al. Iodine containing porous organosilica nanoparticles set off tumor spheroids destruction upon monochromatic X ray irradiation: DNA breaks and Okay edge vitality X ray. Sci. Rep. 11, 14192 (2021).
George, S. J. et al. X-ray photochemistry in iron complexes from Fe(0) to Fe(IV)—can a bug change into a function? Inorg. Chim. Acta 361, 1157–1165 (2008).
Goldberger, D. L. Optimization of Helpful Exhausting X-ray Photochemistry. MSc thesis, Univ. Nevada, Las Vegas (2018).
Emsley, J. Nature’s Constructing Blocks (Oxford Univ. Press, 2011).
Viefhaus, J. et al. The Variable Polarization XUV Beamline P04 at PETRA III: optics, mechanics and their efficiency. Nucl. Instrum. Strategies Phys. Res. A 710, 151–154 (2013).
Malerz, S. et al. A setup for research of photoelectron round dichroism from chiral molecules in aqueous resolution. Rev. Sci. Instrum. 93, 015101 (2022).
Follath, R. & Senf, F. New plane-grating monochromators for third era synchrotron radiation mild sources. Nucl. Instrum. Strategies Phys. Res. A 390, 388–394 (1997).
Weiss, M. R., Follath, R., Senf, F. & Gudat, W. Comparative monochromator research for a tender X-ray microfocus beamline for BESSY-II. J. Electron Spectrosc. Relat. Phenom. 101–103, 1003–1012 (1999).
Jung, C. et al. First outcomes of the tender X-ray microfocus beamline U41-PGM.Nucl. Instrum. Strategies. Phys. Res. A 467–468, 485–487 (2001).
Seidel, R., Thürmer, S. & Winter, B. Photoelectron spectroscopy meets aqueous resolution: research from a vacuum liquid microjet. J. Phys. Chem. Lett. 2, 633–641 (2011).
Duan, J. & Gregory, J. Coagulation by hydrolysing steel salts. Adv. Colloid Interface Sci. 100–102, 475–502 (2003).
Thürmer, S. et al. Correct vertical ionization vitality and work perform determinations of liquid water and aqueous options. Chem. Sci. 12, 10558–10582 (2021).
Barone, V. & Cossi, M. Quantum calculation of molecular energies and vitality gradients in resolution by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).
Lange, A. W. & Herbert, J. M. A clean, nonsingular, and trustworthy discretization scheme for polarizable continuum fashions: the switching/Gaussian method. J. Chem. Phys. 133, 244111 (2010).
Gilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent discipline calculations of excited states utilizing the utmost overlap technique (MOM). J. Phys. Chem. A 112, 13164—13171 (2008).
Epifanovsky, E. et al. Software program for the frontiers of quantum chemistry: an summary of developments within the Q-Chem 5 bundle. J. Chem. Phys. 155, 084801 (2021).
Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing items. 3. Analytical vitality gradients, geometry optimization, and first rules molecular dynamics. J. Chem. Concept Comput. 5, 2619–2628 (2009).
Titov, A. V., Ufimtsev, I. S., Luehr, N. & Martinez, T. J. Producing environment friendly quantum chemistry codes for novel architectures. J. Chem. Concept Comput. 9, 213–221 (2013).
[ad_2]