Home Chemistry Radiation harm by intensive native water ionization from two-step electron-transfer-mediated decay of solvated ions

Radiation harm by intensive native water ionization from two-step electron-transfer-mediated decay of solvated ions

Radiation harm by intensive native water ionization from two-step electron-transfer-mediated decay of solvated ions

[ad_1]

  • Huels, M. A., Boudaïffa, B., Cloutier, P., Looking, D. & Sanche, L. Single, double, and a number of double strand breaks induced in DNA by 3–100 eV electrons. J. Am. Chem. Soc. 125, 4467–4477 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanche, L. Past radical considering. Nature 461, 358—359 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular harm induced by ionizing radiation: the direct and oblique results of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertini, I., Grey, H. B., Stiefel, E. I. & Valentine, J. S. Organic Inorganic Chemistry (College Science Books, 2007).

  • Stumpf, V., Gokhberg, Okay. & Cederbaum, L. S. The function of steel ions in X-ray-induced photochemistry. Nat. Chem. 8, 237–241 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrett, B. C. et al. Position of water in electron-initiated processes and radical chemistry: points and scientific advances. Chem. Rev. 105, 355—390 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Loh, Z.-H. et al. Statement of the quickest chemical processes within the radiolysis of water. Science 367, 179–182 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Large intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Zobeley, J., Santra, R. & Cederbaum, L. S. Digital decay in weakly sure heteroclusters: vitality switch versus electron switch. J. Chem. Phys. 115, 5076 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Jahnke, T. et al. Experimental statement of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jahnke, T. et al. Ultrafast vitality switch between water molecules. Nat. Phys. 6, 139–142 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Havermeier, T. et al. Interatomic Coulombic decay following photoionization of the helium dimer: statement of vibrational construction. Phys. Rev. Lett. 104, 133401 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morishita, Y. et al. Experimental proof of interatomic Coulombic decay from the Auger ultimate states in argon dimers. Phys. Rev. Lett. 96, 243402 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gokhberg, Okay., Kolorenč, P., Kuleff, A. I. & Cederbaum, L. S. Web site- and energy-selective slow-electron manufacturing by means of intermolecular Coulombic decay. Nature 505, 661–663 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trinter, F. et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature 505, 664–666 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marburger, S., Kugeler, O., Hergenhahn, U. & Möller, T. Experimental proof for interatomic Coulombic decay in Ne clusters. Phys. Rev. Lett. 90, 203401 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mucke, M., Arion, T., Förstel, M., Lischke, T. & Hergenhahn, U. Competitors of inelastic electron scattering and interatomic Coulombic decay in Ne clusters. J. Electron Spectrosc. Relat. Phenom. 200, 232–238 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mucke, M. et al. A hitherto unrecognized supply of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Öhrwall, G. et al. Cost dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thürmer, S. et al. On the character and origin of dicationic, charge-separated species fashioned in liquid water on X-ray irradiation. Nat. Chem. 5, 590–596 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interplay between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harbach, P. H. P., Schneider, M., Faraji, S. & Dreuw, A. Intermolecular Coulombic decay in biology: the preliminary electron detachment from FADH in DNA photolyases. J. Phys. Chem. Lett. 4, 943–949 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakai, Okay. et al. Electron-transfer-mediated decay and interatomic Coulombic decay from the triply ionized states in argon dimers. Phys. Rev. Lett. 106, 033401 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Förstel, M., Mucke, M., Arion, T., Bradshaw, A. M. & Hergenhahn, U. Autoionization mediated by electron switch. Phys. Rev. Lett. 106, 033402 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Unger, I. et al. Statement of electron-transfer-mediated decay in aqueous resolution. Nat. Chem. 9, 708–714 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pohl, M. N. et al. Sensitivity of electron switch mediated decay to ion pairing. J. Phys. Chem. B 121, 7709–7714 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stumpf, V., Kolorenč, P., Gokhberg, Okay. & Cederbaum, L. S. Environment friendly pathway to neutralization of multiply charged ions produced in Auger processes. Phys. Rev. Lett. 110, 258302 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, D. et al. Cost switch to ground-state ions produces free electrons. Nat. Commun. 8, 14277 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buth, C., Santra, R. & Cederbaum, L. S. Impression of interatomic digital decay processes on Xe 4d gap decay within the xenon fluorides. J. Chem. Phys. 119, 10575 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Fasshauer, E., Förstel, M., Mucke, M., Arion, T. & Hergenhahn, U. Theoretical and experimental investigation of electron switch mediated decay in ArKr clusters. Chem. Phys. 482, 226–238 (2017).

  • Krause, M. O. Atomic radiative and radiationless yields for Okay and L shells. J. Phys. Chem. Ref. Information 8, 307 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Gopakumar, G. et al. Probing aqueous ions with non-local Auger rest. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Körber, H. & Mehlhorn, W. Das Okay-Auger-Spektrum von Neon. Z. Phys. 191, 217–230 (1966).

    Article 

    Google Scholar
     

  • Leväsalmi, M., Aksela, H. & Aksela, S. Satellite tv for pc construction within the KLL spectrum of neon. Phys. Scr. T41, 119 (1992).

    Article 

    Google Scholar
     

  • Roos, A. H. et al. Abundance of molecular triple ionization by double Auger decay. Sci. Rep. 8, 16405 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hans, A. et al. Direct proof for radiative cost switch after inner-shell excitation and ionization of huge clusters. New J. Phys. 20, 012001 (2018).

    Article 

    Google Scholar
     

  • Malerz, S. et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous options. Phys. Chem. Chem. Phys. 23, 8246–8260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Besley, N. A. Modeling of the spectroscopy of core electrons with density useful concept. WIREs Comput. Mol. Sci. 11, e1527 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Müller, I. B. & Cederbaum, L. S. Ionization and double ionization of small water clusters. J. Chem. Phys. 125, 204305 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Trzhaskovskaya, M. B., Nefedov, V. I. & Yarzhemsky, V. G. Photoelectron angular distribution parameters for components Z=1 to Z=54 within the photoelectron vitality vary 100–5000 eV. At. Information Nucl. Information Tables 77, 97–159 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Slavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-transfer mediated enhancement of nonlocal digital rest processes in X ray irradiated liquid water. J. Am. Chem. Soc. 136, 18170–18176 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Thürmer, S. et al. Photoelectron angular distributions from liquid water: results of electron scattering. Phys. Rev. Lett. 111, 173005 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, Y.-I., Nishizawa, Okay., Kurahashi, N. & Suzuki, T. Efficient attenuation size of an electron in liquid water between 10 and 600 eV. Phys. Rev. E 90, 010302(R) (2014).

    Article 

    Google Scholar
     

  • Signorell, R. & Winter, B. Photoionization of the aqueous part: clusters, droplets and liquid jets. Phys. Chem. Chem. Phys. 24, 13438–13460 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowell, R. A., Lian, R., Sauer Jr, M. C., Oulianov, D. A. & Shkrob, I. A. Geminate recombination of hydroxyl radicals generated in 200 nm photodissociation of aqueous hydrogen peroxide. Chem. Phys. Lett. 383, 481–485 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Teolis, B. D., Plainaki, C., Cassidy, T. A. & Raut, U. Water ice radiolytic O2, H2, and H2O2 yields for any projectile species, vitality, or temperature: a mannequin for icy astrophysical our bodies. J. Geophys. Res. Planets 122, 1996–2012 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krause, W., Jordan, A., Scholz, R. & Jimenez, J.-L. M. Iodinated nitroimidazoles as radiosensitizers. Anticancer Res. 25, 2145–2152 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, Okay., Usami, N., Porcel, E., Lacombe, S. & Le Sech, C. Enhancement of radiation impact by heavy components. Mutat. Res. Rev. Mutat. Res. 704, 123—131 (2010).

    Article 

    Google Scholar
     

  • Matsumoto, Okay. et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: implications for the Auger remedy. Sci. Rep. 9, 13275 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, A., Facca, V. J., Cai, Z. & Reilly, R. M. Auger electrons for most cancers remedy—a evaluation. EJNMMI Radiopharm. Chem. 4, 27 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higashi, Y. et al. Iodine containing porous organosilica nanoparticles set off tumor spheroids destruction upon monochromatic X ray irradiation: DNA breaks and Okay edge vitality X ray. Sci. Rep. 11, 14192 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, S. J. et al. X-ray photochemistry in iron complexes from Fe(0) to Fe(IV)—can a bug change into a function? Inorg. Chim. Acta 361, 1157–1165 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Goldberger, D. L. Optimization of Helpful Exhausting X-ray Photochemistry. MSc thesis, Univ. Nevada, Las Vegas (2018).

  • Emsley, J. Nature’s Constructing Blocks (Oxford Univ. Press, 2011).

  • Viefhaus, J. et al. The Variable Polarization XUV Beamline P04 at PETRA III: optics, mechanics and their efficiency. Nucl. Instrum. Strategies Phys. Res. A 710, 151–154 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Malerz, S. et al. A setup for research of photoelectron round dichroism from chiral molecules in aqueous resolution. Rev. Sci. Instrum. 93, 015101 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Follath, R. & Senf, F. New plane-grating monochromators for third era synchrotron radiation mild sources. Nucl. Instrum. Strategies Phys. Res. A 390, 388–394 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Weiss, M. R., Follath, R., Senf, F. & Gudat, W. Comparative monochromator research for a tender X-ray microfocus beamline for BESSY-II. J. Electron Spectrosc. Relat. Phenom. 101–103, 1003–1012 (1999).

    Article 

    Google Scholar
     

  • Jung, C. et al. First outcomes of the tender X-ray microfocus beamline U41-PGM.Nucl. Instrum. Strategies. Phys. Res. A 467468, 485–487 (2001).

    Article 

    Google Scholar
     

  • Seidel, R., Thürmer, S. & Winter, B. Photoelectron spectroscopy meets aqueous resolution: research from a vacuum liquid microjet. J. Phys. Chem. Lett. 2, 633–641 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Duan, J. & Gregory, J. Coagulation by hydrolysing steel salts. Adv. Colloid Interface Sci. 100–102, 475–502 (2003).

    Article 

    Google Scholar
     

  • Thürmer, S. et al. Correct vertical ionization vitality and work perform determinations of liquid water and aqueous options. Chem. Sci. 12, 10558–10582 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barone, V. & Cossi, M. Quantum calculation of molecular energies and vitality gradients in resolution by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lange, A. W. & Herbert, J. M. A clean, nonsingular, and trustworthy discretization scheme for polarizable continuum fashions: the switching/Gaussian method. J. Chem. Phys. 133, 244111 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent discipline calculations of excited states utilizing the utmost overlap technique (MOM). J. Phys. Chem. A 112, 13164—13171 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Epifanovsky, E. et al. Software program for the frontiers of quantum chemistry: an summary of developments within the Q-Chem 5 bundle. J. Chem. Phys. 155, 084801 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing items. 3. Analytical vitality gradients, geometry optimization, and first rules molecular dynamics. J. Chem. Concept Comput. 5, 2619–2628 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Titov, A. V., Ufimtsev, I. S., Luehr, N. & Martinez, T. J. Producing environment friendly quantum chemistry codes for novel architectures. J. Chem. Concept Comput. 9, 213–221 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here