Home Chemistry Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation

Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation

Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation

[ad_1]

  • Schnell, H. Linear fragrant polyesters of carbonic acid. Ind. Eng. Chem. 51, 157–160 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Pham, H. Q. & Marks, M. J. in Ullmann’s Encyclopedia of Industrial Chemistry (eds Ley, C. et al.) 161–164 (Wiley-VCH, 2005).

  • Dodds, E. C. & Lawson, W. Artificial estrogenic brokers with out the phenanthrene nucleus. Nature 137, 996 (1936).

    Article 
    CAS 

    Google Scholar
     

  • Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L. & Feldman, D. Bisphenol-A: an estrogenic substance is launched from polycarbonate flasks throughout autoclaving. Endocrinology 132, 2279–2286 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Brotons, J. A., Olea -Serrano, M. F., Villalobos, M., Pedraza, V. & Olea, N. Xenoestrogens launched from lacquer coatings in meals cans. Environ. Well being Perspect. 103, 608–612 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Corrales, J. et al. International evaluation of bisphenol A within the setting: overview and evaluation of its incidence and bioaccumulation. Dose Response 13, 1559325815598308 (2015).

  • Howdeshell, Ok. L., Hotchkiss, A. Ok., Thayer, Ok. A., Vandenbergh, J. G. & vom Saal, F. S. Publicity to bisphenol A advances puberty. Nature 401, 763–764 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Nadal, A. Fats from plastics? Linking bisphenol A publicity and weight problems. Nat. Rev. Endocrinol. 9, 9–10 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and weight problems. Nat. Rev. Endocrinol. 11, 653–661 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Heindel, J. J. et al. Information integration, evaluation, and interpretation of eight tutorial CLARITY-BPA research. Reprod. Toxicol. 98, 29–60 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vom Saal, F. S. & Vandenberg, L. N. Replace on the well being results of bisphenol A: overwhelming proof of hurt. Endocrinology 162, bqaa171 (2021).

    Article 

    Google Scholar
     

  • Eladak, S. et al. A brand new chapter within the bisphenol A narrative: bisphenol S and bisphenol F are usually not secure alternate options to this compound. Fertil. Steril. 103, 11–21 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zimmerman, J. B. & Anastas, P. T. Towards substitution with no regrets. Science 347, 1198–1199 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Warner, G. R. & Flaws, J. A. Frequent bisphenol A replacements are reproductive toxicants. Nat. Rev. Endocrinol. 14, 691–692 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Soto, A. M., Schaeberle, C., Maier, M. S., Sonnenschein, C. & Maffini, M. V. Proof of absence: estrogenicity evaluation of a brand new food-contact coating and the bisphenol utilized in its synthesis. Environ. Sci. Technol. 51, 1718–1726 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Koelewijn, S.-F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Inexperienced Chem. 19, 2561–2570 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Koelewijn, S.-F. et al. Promising bulk manufacturing of a doubtlessly benign bisphenol A substitute from a hardwood lignin platform. Inexperienced Chem. 20, 1050–1058 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Janvier, M. et al. Syringaresinol: a renewable and safer different to bisphenol A for epoxy-amine resins. ChemSusChem 10, 738–746 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Trita, A. S. et al. Synthesis of potential bisphenol A substitutes by isomerising metathesis of renewable uncooked supplies. Inexperienced Chem. 19, 3051–3060 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Szafran, A. T., Stossi, F., Mancini, M. G., Walker, C. L. & Mancini, M. A. Characterizing properties of non-estrogenic substituted bisphenol analogs utilizing excessive throughput microscopy and picture evaluation. PLoS ONE 12, e0180141 (2017).

    Article 

    Google Scholar
     

  • Koelewijn, S.-F. et al. Regioselective synthesis, isomerisation, in vitro oestrogenic exercise, and copolymerisation of bisguaiacol F (BGF) isomers. Inexperienced Chem. 21, 6622–6633 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Y., Nicastro, Ok. H., Epps, T. H. III & Wu, C. Methoxy teams diminished the estrogenic exercise of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied by two in vitro assays. Meals Chem. 338, 127656 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Amitrano, A., Mahajan, J. S., Korley, L. T. & Epps, T. H. Estrogenic exercise of lignin-derivable alternate options to bisphenol A assessed by way of molecular docking simulations. RSC Adv. 11, 22149–22158 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vanholme, R., Demedts, B., Morreel, Ok., Ralph, J. & Boerjan, W. Lignin biosynthesis and construction. Plant Physiol. 153, 895–905 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the manufacturing of renewable chemical substances. Chem. Rev. 110, 3552–3599 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ragauskas, A. J. et al. Lignin valorization: enhancing lignin processing within the biorefinery. Science 344, 1246843 (2014).

    Article 

    Google Scholar
     

  • Rinaldi, R. et al. Paving the way in which for lignin valorisation: latest advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schutyser, W. et al. Chemical substances from lignin: an interaction of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, Ok. Shiny facet of lignin depolymerization: towards new platform chemical substances. Chem. Rev. 118, 614–678 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Renders, T., den Bosch, S. V., Koelewijn, S.-F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the arrival of energetic stabilisation methods. Vitality Environ. Sci. 10, 1551–1557 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Meier, D., Berns, J., Grünwald, C. & Faix, O. Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of Organocell lignin. J. Anal. Appl. Pyrolysis 25, 335–347 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Onwudili, J. A. & Williams, P. T. Catalytic depolymerization of alkali lignin in subcritical water: affect of formic acid and Pd/C catalyst on the yields of liquid monomeric fragrant merchandise. Inexperienced Chem. 16, 4740–4748 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Complete utilization of Miscanthus biomass, lignin and carbohydrates, utilizing earth-abundant nickel catalyst. ACS Maintain. Chem. Eng. 4, 2316–2322 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, E. M. et al. Reductive catalytic fractionation of corn stover lignin. ACS Maintain. Chem. Eng. 4, 6940–6950 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z. & Moghadasian, M. H. Chemistry, pure sources, dietary consumption and pharmacokinetic properties of ferulic acid: a overview. Meals Chem. 109, 691–702 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chandra, G. et al. Alkoxy polycarbonates, bisphenol monomers and strategies of constructing and utilizing the identical. US patent 9,120,893 (2015).

  • Trullemans, L. et al. A information in the direction of secure, purposeful and renewable BPA alternate options by rational molecular design: construction–property and construction–toxicity relationships. Polym. Chem. 12, 5870–5901 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hernandez, E. D., Bassett, A. W., Sadler, J. M., La Scala, J. J. & Stanzione, J. F. Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Maintain. Chem. Eng. 4, 4328–4339 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hambleton, Ok. M. & Stanzione, J. F. Synthesis and characterization of a low-molecular-weight novolac epoxy derived from lignin-inspired phenolics. ACS Omega 6, 23855–23861 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cavani, F., Corrado, M. & Mezzogori, R. A observe on the position of methanol within the homogeneous and heterogeneous acid-catalyzed hydroxymethylation of guaiacol with aqueous options of formaldehyde. J. Mol. Catal. A 182–183, 447–453 (2002).

    Article 

    Google Scholar
     

  • De Vos, D. E. & Jacobs, P. A. Zeolite results in liquid part natural transformations. Microporous Mesoporous Mater. 82, 293–304 (2005).

    Article 

    Google Scholar
     

  • Galkin, M. V. & Samec, J. S. M. Selective path to 2-propenyl aryls instantly from wooden by a tandem organosolv and palladium-catalysed switch hydrogenolysis. ChemSusChem 7, 2154–2158 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, L.-P. et al. Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide. ACS Catal. 7, 7535–7542 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Martínez, C. & Corma, A. Inorganic molecular sieves: preparation, modification and industrial software in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).

    Article 

    Google Scholar
     

  • Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity below nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Åqvist, J., Kazemi, M., Isaksen, G. V. & Brandsdal, B. O. Entropy and enzyme catalysis. Acc. Chem. Res. 50, 199–207 (2017).

    Article 

    Google Scholar
     

  • Beste, A. & Buchanan, A. C. Computational examine of bond dissociation enthalpies for lignin mannequin compounds. Substituent results in phenethyl phenyl ethers. J. Org. Chem. 74, 2837–2841 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Liu, P., Zeng, L., Ye, G. & Xu, J. Bisphenol A-based co-polyarylates: synthesis, properties and thermal decomposition mechanism. J. Polym. Res. 20, 279 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Curia, S. et al. In the direction of sustainable excessive‐efficiency thermoplastics: synthesis, characterization, and enzymatic hydrolysis of bisguaiacol‐primarily based polyesters. ChemSusChem 11, 2529–2539 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Witters, H. et al. The evaluation of estrogenic or anti-estrogenic exercise of chemical substances by the human stably transfected estrogen delicate MELN cell line: outcomes of check efficiency and transferability. Reprod. Toxicol. 30, 60–72 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Vandermarken, T. et al. Characterisation and implementation of the ERE-CALUX bioassay on indoor mud samples of kindergartens to evaluate estrogenic potencies. J. Steroid Biochem. Mol. Biol. 155, 182–189 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kuhire, S. S., Nagane, S. S. & Wadgaonkar, P. P. Pendant furyl containing bisphenols, polymers therefrom and a course of for the preparation thereof. WO patent 2015140818A4 (2015).

  • Ping, Z., Linbo, W. & Bo-Geng, L. Thermal stability of fragrant polyesters ready from diphenolic acid and its esters. Polym. Degrad. Stab. 94, 1261–1266 (2009).

    Article 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here