[ad_1]
Schnell, H. Linear fragrant polyesters of carbonic acid. Ind. Eng. Chem. 51, 157–160 (1959).
Pham, H. Q. & Marks, M. J. in Ullmann’s Encyclopedia of Industrial Chemistry (eds Ley, C. et al.) 161–164 (Wiley-VCH, 2005).
Dodds, E. C. & Lawson, W. Artificial estrogenic brokers with out the phenanthrene nucleus. Nature 137, 996 (1936).
Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L. & Feldman, D. Bisphenol-A: an estrogenic substance is launched from polycarbonate flasks throughout autoclaving. Endocrinology 132, 2279–2286 (1993).
Brotons, J. A., Olea -Serrano, M. F., Villalobos, M., Pedraza, V. & Olea, N. Xenoestrogens launched from lacquer coatings in meals cans. Environ. Well being Perspect. 103, 608–612 (1995).
Corrales, J. et al. International evaluation of bisphenol A within the setting: overview and evaluation of its incidence and bioaccumulation. Dose Response 13, 1559325815598308 (2015).
Howdeshell, Ok. L., Hotchkiss, A. Ok., Thayer, Ok. A., Vandenbergh, J. G. & vom Saal, F. S. Publicity to bisphenol A advances puberty. Nature 401, 763–764 (1999).
Nadal, A. Fats from plastics? Linking bisphenol A publicity and weight problems. Nat. Rev. Endocrinol. 9, 9–10 (2013).
Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and weight problems. Nat. Rev. Endocrinol. 11, 653–661 (2015).
Heindel, J. J. et al. Information integration, evaluation, and interpretation of eight tutorial CLARITY-BPA research. Reprod. Toxicol. 98, 29–60 (2020).
Vom Saal, F. S. & Vandenberg, L. N. Replace on the well being results of bisphenol A: overwhelming proof of hurt. Endocrinology 162, bqaa171 (2021).
Eladak, S. et al. A brand new chapter within the bisphenol A narrative: bisphenol S and bisphenol F are usually not secure alternate options to this compound. Fertil. Steril. 103, 11–21 (2015).
Zimmerman, J. B. & Anastas, P. T. Towards substitution with no regrets. Science 347, 1198–1199 (2015).
Warner, G. R. & Flaws, J. A. Frequent bisphenol A replacements are reproductive toxicants. Nat. Rev. Endocrinol. 14, 691–692 (2018).
Soto, A. M., Schaeberle, C., Maier, M. S., Sonnenschein, C. & Maffini, M. V. Proof of absence: estrogenicity evaluation of a brand new food-contact coating and the bisphenol utilized in its synthesis. Environ. Sci. Technol. 51, 1718–1726 (2017).
Koelewijn, S.-F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Inexperienced Chem. 19, 2561–2570 (2017).
Koelewijn, S.-F. et al. Promising bulk manufacturing of a doubtlessly benign bisphenol A substitute from a hardwood lignin platform. Inexperienced Chem. 20, 1050–1058 (2018).
Janvier, M. et al. Syringaresinol: a renewable and safer different to bisphenol A for epoxy-amine resins. ChemSusChem 10, 738–746 (2017).
Trita, A. S. et al. Synthesis of potential bisphenol A substitutes by isomerising metathesis of renewable uncooked supplies. Inexperienced Chem. 19, 3051–3060 (2017).
Szafran, A. T., Stossi, F., Mancini, M. G., Walker, C. L. & Mancini, M. A. Characterizing properties of non-estrogenic substituted bisphenol analogs utilizing excessive throughput microscopy and picture evaluation. PLoS ONE 12, e0180141 (2017).
Koelewijn, S.-F. et al. Regioselective synthesis, isomerisation, in vitro oestrogenic exercise, and copolymerisation of bisguaiacol F (BGF) isomers. Inexperienced Chem. 21, 6622–6633 (2019).
Peng, Y., Nicastro, Ok. H., Epps, T. H. III & Wu, C. Methoxy teams diminished the estrogenic exercise of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied by two in vitro assays. Meals Chem. 338, 127656 (2021).
Amitrano, A., Mahajan, J. S., Korley, L. T. & Epps, T. H. Estrogenic exercise of lignin-derivable alternate options to bisphenol A assessed by way of molecular docking simulations. RSC Adv. 11, 22149–22158 (2021).
Vanholme, R., Demedts, B., Morreel, Ok., Ralph, J. & Boerjan, W. Lignin biosynthesis and construction. Plant Physiol. 153, 895–905 (2010).
Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the manufacturing of renewable chemical substances. Chem. Rev. 110, 3552–3599 (2010).
Ragauskas, A. J. et al. Lignin valorization: enhancing lignin processing within the biorefinery. Science 344, 1246843 (2014).
Rinaldi, R. et al. Paving the way in which for lignin valorisation: latest advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).
Schutyser, W. et al. Chemical substances from lignin: an interaction of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).
Solar, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, Ok. Shiny facet of lignin depolymerization: towards new platform chemical substances. Chem. Rev. 118, 614–678 (2018).
Renders, T., den Bosch, S. V., Koelewijn, S.-F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the arrival of energetic stabilisation methods. Vitality Environ. Sci. 10, 1551–1557 (2017).
Meier, D., Berns, J., Grünwald, C. & Faix, O. Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of Organocell lignin. J. Anal. Appl. Pyrolysis 25, 335–347 (1993).
Onwudili, J. A. & Williams, P. T. Catalytic depolymerization of alkali lignin in subcritical water: affect of formic acid and Pd/C catalyst on the yields of liquid monomeric fragrant merchandise. Inexperienced Chem. 16, 4740–4748 (2014).
Luo, H. et al. Complete utilization of Miscanthus biomass, lignin and carbohydrates, utilizing earth-abundant nickel catalyst. ACS Maintain. Chem. Eng. 4, 2316–2322 (2016).
Anderson, E. M. et al. Reductive catalytic fractionation of corn stover lignin. ACS Maintain. Chem. Eng. 4, 6940–6950 (2016).
Zhao, Z. & Moghadasian, M. H. Chemistry, pure sources, dietary consumption and pharmacokinetic properties of ferulic acid: a overview. Meals Chem. 109, 691–702 (2008).
Chandra, G. et al. Alkoxy polycarbonates, bisphenol monomers and strategies of constructing and utilizing the identical. US patent 9,120,893 (2015).
Trullemans, L. et al. A information in the direction of secure, purposeful and renewable BPA alternate options by rational molecular design: construction–property and construction–toxicity relationships. Polym. Chem. 12, 5870–5901 (2021).
Hernandez, E. D., Bassett, A. W., Sadler, J. M., La Scala, J. J. & Stanzione, J. F. Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Maintain. Chem. Eng. 4, 4328–4339 (2016).
Hambleton, Ok. M. & Stanzione, J. F. Synthesis and characterization of a low-molecular-weight novolac epoxy derived from lignin-inspired phenolics. ACS Omega 6, 23855–23861 (2021).
Cavani, F., Corrado, M. & Mezzogori, R. A observe on the position of methanol within the homogeneous and heterogeneous acid-catalyzed hydroxymethylation of guaiacol with aqueous options of formaldehyde. J. Mol. Catal. A 182–183, 447–453 (2002).
De Vos, D. E. & Jacobs, P. A. Zeolite results in liquid part natural transformations. Microporous Mesoporous Mater. 82, 293–304 (2005).
Galkin, M. V. & Samec, J. S. M. Selective path to 2-propenyl aryls instantly from wooden by a tandem organosolv and palladium-catalysed switch hydrogenolysis. ChemSusChem 7, 2154–2158 (2014).
Xiao, L.-P. et al. Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide. ACS Catal. 7, 7535–7542 (2017).
Martínez, C. & Corma, A. Inorganic molecular sieves: preparation, modification and industrial software in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).
Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity below nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).
Åqvist, J., Kazemi, M., Isaksen, G. V. & Brandsdal, B. O. Entropy and enzyme catalysis. Acc. Chem. Res. 50, 199–207 (2017).
Beste, A. & Buchanan, A. C. Computational examine of bond dissociation enthalpies for lignin mannequin compounds. Substituent results in phenethyl phenyl ethers. J. Org. Chem. 74, 2837–2841 (2009).
Liu, P., Zeng, L., Ye, G. & Xu, J. Bisphenol A-based co-polyarylates: synthesis, properties and thermal decomposition mechanism. J. Polym. Res. 20, 279 (2013).
Curia, S. et al. In the direction of sustainable excessive‐efficiency thermoplastics: synthesis, characterization, and enzymatic hydrolysis of bisguaiacol‐primarily based polyesters. ChemSusChem 11, 2529–2539 (2018).
Witters, H. et al. The evaluation of estrogenic or anti-estrogenic exercise of chemical substances by the human stably transfected estrogen delicate MELN cell line: outcomes of check efficiency and transferability. Reprod. Toxicol. 30, 60–72 (2010).
Vandermarken, T. et al. Characterisation and implementation of the ERE-CALUX bioassay on indoor mud samples of kindergartens to evaluate estrogenic potencies. J. Steroid Biochem. Mol. Biol. 155, 182–189 (2016).
Kuhire, S. S., Nagane, S. S. & Wadgaonkar, P. P. Pendant furyl containing bisphenols, polymers therefrom and a course of for the preparation thereof. WO patent 2015140818A4 (2015).
Ping, Z., Linbo, W. & Bo-Geng, L. Thermal stability of fragrant polyesters ready from diphenolic acid and its esters. Polym. Degrad. Stab. 94, 1261–1266 (2009).
[ad_2]