Home Chemistry Structural dynamics influences the antibacterial exercise of a cell-penetrating peptide (KFF)3K

Structural dynamics influences the antibacterial exercise of a cell-penetrating peptide (KFF)3K

0
Structural dynamics influences the antibacterial exercise of a cell-penetrating peptide (KFF)3K

[ad_1]

  • Avci, F. G., Akbulut, B. S. & Ozkirimli, E. Membrane lively peptides and their biophysical characterization. Biomolecules 8, 1–43 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sani, M. A. & Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res. 49, 1130–1138 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gräslund, A., Madani, F., Lindberg, S., Langel, Ü. & Futaki, S. Mechanisms of mobile uptake of cell-penetrating peptides. J. Biophys. 2011, 414729 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heitz, F., Morris, M. C. & Divita, G. Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics. Br. J. Pharmacol. 157, 195–206 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. M. et al. Identification of environment friendly prokaryotic cell-penetrating peptides with purposes in bacterial biotechnology. Commun. Biol. 4, 1–13 (2021).

    Article 

    Google Scholar
     

  • Munyendo, W. L. L., Lv, H., Benza-Ingoula, H., Baraza, L. D. & Zhou, J. Cell penetrating peptides within the supply of biopharmaceuticals. Biomolecules 2, 187–202 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousef, M. et al. Cell-penetrating dabcyl-containing tetraarginines with spine aromatics as uptake enhancers. Pharmaceutics 15, 141 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. et al. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial exercise. ACS Omega 4, 15694–15701 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, S. H., Park, J. & Koo, H. Latest advances in selective and focused drug/gene supply programs utilizing cell-penetrating peptides. Arch. Pharm. Res. 46, 18–34 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eiríksdóttir, E., Konate, Okay., Langel, Ü., Divita, G. & Deshayes, S. Secondary construction of cell-penetrating peptides controls membrane interplay and insertion. Biochim. Biophys. Acta Biomembr. 1798, 1119–1128 (2010).

    Article 

    Google Scholar
     

  • Gautam, A. et al. CPPsite: A curated database of cell penetrating peptides. Database 2012, 1–7 (2012).

    Article 

    Google Scholar
     

  • Oikawa, Okay., Islam, M. M., Horii, Y., Yoshizumi, T. & Numata, Okay. Screening of a cell-penetrating peptide library in Escherichia coli: Relationship between cell penetration effectivity and cytotoxicity. ACS Omega 3, 16489–16499 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xie, J. et al. Cell-penetrating peptides in analysis and remedy of human illnesses: From preclinical analysis to scientific software. Entrance. Pharmacol. 11, 1–23 (2020).

    Article 

    Google Scholar
     

  • Di Pisa, M., Chassaing, G. & Swiecicki, J. M. Translocation mechanism(s) of cell-penetrating peptides: Biophysical research utilizing synthetic membrane bilayers. Biochemistry 54, 194–207 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Derakhshankhah, H. & Jafari, S. Cell penetrating peptides: A concise evaluate with emphasis on biomedical purposes. Biomed. Pharmacother. 108, 1090–1096 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desale, Okay., Kuche, Okay. & Jain, S. Cell-penetrating peptides (CPPs): An outline of purposes for bettering the potential of nanotherapeutics. Biomater. Sci. 9, 1153–1188 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gori, A. A., Lodigiani, G., Colombarolli, S. G., Bergamaschi, G. & Vitali, A. Cell penetrating peptides: Classification, mechanisms, strategies of examine and purposes. Chem. Med. Chem. 1, e202300236 (2023).

    Article 

    Google Scholar
     

  • Vaara, M. & Porro, M. Group of peptides that act synergistically with hydrophobic antibiotics in opposition to gram-negative enteric micro organism. Antimicrob. Brokers Chemother. 40, 1801–1805 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wojciechowska, M., Miszkiewicz, J. & Trylska, J. Conformational modifications of anoplin, W-MreB1–9, and (KFF)3Okay peptides close to the membranes. Int. J. Mol. Sci. 21, 9672 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, H. et al. Focusing on RNA polymerase major σ70 as a therapeutic technique in opposition to methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS ONE 7, 1–10 (2012).

    Article 

    Google Scholar
     

  • Kulik, M. et al. Helix 69 of Escherichia coli 23S ribosomal RNA as a peptide nucleic acid goal. Biochimie 138, 32–42 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castillo, J. I., Równicki, M., Wojciechowska, M. & Trylska, J. Antimicrobial synergy between mRNA focused peptide nucleic acid and antibiotics in E. coli. Bioorg. Med. Chem. Lett. 28, 3094–3098 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Równicki, M. et al. Vitamin B12 as a service of peptide nucleic acid (PNA) into bacterial cells. Sci. Rep. 7, 1–11 (2017).

    Article 

    Google Scholar
     

  • Wojciechowska, M., Równicki, M., Mieczkowski, A., Miszkiewicz, J. & Trylska, J. Antibacterial peptide nucleic acids: info and views. Int. J. Mol. Sci. 25, 59 (2020).


    Google Scholar
     

  • Hatamoto, M., Nakai, Okay., Ohashi, A. & Imachi, H. Sequence-specific bacterial development inhibition by peptide nucleic acid focused to the mRNA binding web site of 16S rRNA. Appl. Microbiol. Biotechnol. 84, 1161–1168 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yavari, N., Goltermann, L. & Nielsen, P. E. Uptake, Stability, and exercise of antisense anti- acpP PNA-peptide conjugates in Escherichia coli and the position of SbmA. ACS Chem. Biol. 16, 471–479 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szabó, I. et al. Redesigning of cell-penetrating peptides to enhance their efficacy as a drug supply system. Pharmaceutics 14, 907 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melikov, Okay. & Chernomordik, L. V. Arginine-rich cell penetrating peptides: From endosomal uptake to nuclear supply. Cell. Mol. Life Sci. 62, 2739–2749 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nan, Y. H., Park, I. S., Hahm, Okay. S. & Shin, S. Y. Antimicrobial exercise, bactericidal mechanism and LPS-neutralizing exercise of the cell-penetrating peptide pVEC and its analogs. J. Pept. Sci. 17, 812–817 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faust, J. E., Yang, P. Y. & Huang, H. W. Motion of antimicrobial peptides on bacterial and lipid membranes: A direct comparability. Biophys. J. 112, 1663–1672 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budagavi, D. P. & Chugh, A. Antibacterial properties of Latarcin 1 derived cell-penetrating peptides. Eur. J. Pharm. Sci. 115, 43–49 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. L. et al. Design and mechanism of motion of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 349, 769–774 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. L., Hahm, Okay. S. & Shina, S. Y. Cell selectivity and mechanism of motion of quick antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15, 569–575 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shai, Y. Mode of motion of membrane lively antimicrobial peptides. Pept. Sci. 66, 236–248 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Mourtada, R. et al. Design of stapled antimicrobial peptides that overcome antibiotic resistance and in vivo toxicity. Nat Biotechnol. 37, 1186–1197 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. Y., Yum, S. Y., Jang, G. & Ahn, D. R. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein supply service. Sci. Rep. 5, 1–15 (2015).


    Google Scholar
     

  • Hong, S. Y., Oh, J. E. & Lee, Okay.-H. Impact of D-amino acid substitution on the soundness, the secondary construction, and the exercise of membrane-active peptide. Biochem. Pharmacol. 58, 1775–1780 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Migoń, D., Neubauer, D. & Kamysz, W. Hydrocarbon stapled antimicrobial peptides. Protein J. 37, 2–12 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapuis, H. et al. Impact of hydrocarbon stapling on the properties of α-helical antimicrobial peptides remoted from the venom of hymenoptera. Amino Acids 43, 2047–2058 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackwell, H. E. & Grubbs, R. H. Extremely environment friendly synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. 37, 3281–3284 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lau, Y. H., De Andrade, P., Wu, Y. & Spring, D. R. Peptide stapling strategies primarily based on totally different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, Y. H., Liu, H. Y., Zhu, Y. Z. & Zheng, H. Rational design of stapled antimicrobial peptides. Amino Acids 55, 421–442 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walensky, L. D. & Hen, G. H. Hydrocarbon-stapled peptides: Rules, observe, and progress. J. Med. Chem. 57, 6275–6288 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hen, G. H., Christian Crannell, W. & Walensky, L. D. Chemical synthesis of hydrocarbon-stapled peptides for protein interplay analysis and therapeutic concentrating on. Curr. Protoc. Chem. Biol. 3, 99–117 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luong, H. X., Kim, D.-H., Lee, B.-J. & Kim, Y.-W. Antimicrobial exercise and stability of stapled helices of polybia-MP1. Arch. Pharm. Res. 40, 1414–1419 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mourtada, R. et al. Design of stapled antimicrobial peptides which can be steady, unhazardous and kill antibiotic-resistant micro organism in mice. Nat. Biotechnol. 37, 1186–1197 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wojciechowska, M., Macyszyn, J., Miszkiewicz, J., Grzela, R. & Trylska, J. Stapled anoplin as an antibacterial agent. Entrance. Microbiol. 12, 772038 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stawikowski, G. B. F. M. Introduction to peptide synthesis. Curr. Protoc. Protein Sci. 26, 1–17 (2002).


    Google Scholar
     

  • Kaiser, E., Colescott, R. L., Bossinger, C. D. & Prepare dinner, P. I. Coloration check for detection of free terminal amino teams within the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miles, A. J., Ramalli, S. G. & Wallace, B. A. DichroWeb, a web site for calculating protein secondary construction from round dichroism spectroscopic information. Protein Sci. 31, 37–46 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitmore, L. & Wallace, B. A. Protein secondary construction analyses from round dichroism spectroscopy: Strategies and reference databases. Biopolymers 89, 392–400 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdul-Gader, A., Miles, A. J. & Wallace, B. A. A reference dataset for the analyses of membrane protein secondary constructions and transmembrane residues utilizing round dichroism spectroscopy. Bioinformatics 27, 1630–1636 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Case, D. A. et al. Amber 2020 (College of California, 2020).


    Google Scholar
     

  • Khoury, G. A. et al. Forcefield-NCAA: Ab initio cost parameters to assist within the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their software to enhance inhibitors of the compstatin household. ACS Synth. Biol. 3, 855–869 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, X., Jo, S., Lee, H. S., Klauda, J. B. & Im, W. CHARMM-GUI micelle builder for pure/combined micelle and protein/micelle advanced programs. J. Chem. Inf. Mannequin. 53, 2171–2180 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allouche, A. Software program information and updates gabedit: A graphical consumer interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2012).

    Article 

    Google Scholar
     

  • Turro, N. J. & Yekta, A. Luminescent probes for detergent options: A easy process for willpower of the imply aggregation variety of micelles. J. Am. Chem. Soc 100, 5951–5952 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Croonen, Y. et al. Affect of salt, detergent focus, and temperature on the fluorescence quenching of 1-methylpyrene in sodium dodecyl sulfate with m-dicyanobenzene. J. Phys. Chem. 87, 1426–1431 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Bales, B. L., Messina, L., Vidal, A., Peric, M. & Nascimento, O. R. Precision relative aggregation quantity determinations of SDS micelles utilizing a spin probe. A mannequin of micelle floor hydration. J. Phys. Chem. B 102, 10347–10358 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Palazzesi, F., Calvaresi, M. & Zerbetto, F. A molecular dynamics investigation of construction and dynamics of SDS and SDBS micelles. Tender Matter 7, 9148–9156 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maier, J. A. et al. ff14SB: Bettering the accuracy of protein facet chain and spine parameters from ff99SB. J. Chem. Idea Comput. 11, 3696–3713 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of easy potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Joung, I. S. & Cheatham, T. E. Dedication of alkali and halide monovalent ion parameters to be used in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homeyer, N., Horn, A. H. C., Lanig, H. & Sticht, H. AMBER force-field parameters for phosphorylated amino acids in several protonation states: Phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Mannequin. 12, 281–289 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanommeslaeghe, Okay. et al. CHARMM basic pressure area: A pressure area for drug-like molecules suitable with the CHARMM all-atom additive organic pressure fields. J. Comput. Chem. 31, 671–690 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Lengthy-time-step molecular dynamics by means of hydrogen mass repartitioning. J. Chem. Idea Comput. 11, 1864–1874 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabsch, C. S. W. Dictionary of protein secondary construction: Sample recognition of hydrogen-bonded and geometrical options. Sing. Med. J. 12, 2577–2637 (1983).


    Google Scholar
     

  • Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: Software program for processing and evaluation of molecular dynamics trajectory information. J. Chem. Idea Comput. 9, 3084–3095 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: A 2D graphics setting. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Okay. VMD: Visible molecular dynamics. J. Mol. Graph. 7855, 33–38 (1996).

    Article 

    Google Scholar
     

  • Zhong, C. et al. Antimicrobial peptides conjugated with fatty acids on the facet chain of D-amino acid guarantees antimicrobial efficiency in opposition to multidrug-resistant micro organism. Eur. J. Pharm. Sci. 141, 105123 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merkler, D. J. C-terminal amidated peptides: Manufacturing by the in vitro enzymic amidation of glycine-extended peptides and the significance of the amide to bioactivity. Chem. Inform. 25, 450–456 (2010).


    Google Scholar
     

  • Toniolo, C., Polese, A., Formaggio, F., Crisma, M. & Kamphuis, J. Round dichroism spectrum of a peptide 310-helix. J. Am. Chem. Soc. 118, 2744–2745 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Watson, R. M. et al. Conformational modifications in pediocin AcH upon vesicle binding and approximation of the membrane-bound construction in detergent micelles. Biochemistry 40, 14037–14046 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorovkov, M. V., Kostyukova, A. S. & Ryazanov, A. G. Phosphorylation of annexin A1 by TRPM7 kinase: A change regulating the induction of an α-helix. Biochemistry 50, 2187–2193 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doig, A. J., Macarthur, M. W., Stapley, B. J. & Thornton, J. M. Constructions of N-termini of helices in proteins. Protein Sci. 6, 147–155 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czapinska, H. & Otlewski, J. Structural and energetic determinants of the S1-site specificity in serine proteases. Eur. J. Biochem. 260, 571–595 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schafmeister, C. E., Po, J. & Verdine, G. L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Malanovic, N. & Lohner, Okay. Gram-positive bacterial cell envelopes: The impression on the exercise of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 1858, 936–946 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Łoś, J. M., Łoś, M., Wȩgrzyn, A. & Wȩgrzyn, G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 58, 322–329 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Hrabák, J. et al. Worldwide clones of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamases in a Czech Hospital. J. Clin. Microbiol. 47, 3353–3357 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29213 @ www.atcc.org. https://www.atcc.org/merchandise/29213.

  • baa-1720 @ www.atcc.org. https://www.atcc.org/merchandise/baa-1720.

  • 27853 @ www.atcc.org. https://www.atcc.org/merchandise/27853.

  • Schoch, C. L. et al. NCBI taxonomy: A complete replace on curation, assets and instruments. Database 2020, 1–21 (2020).

    Article 

    Google Scholar
     

  • Li, B. et al. Colistin resistance gene mcr-1 mediates cell permeability and resistance to hydrophobic antibiotics. Entrance. Microbiol. 10, 1–7 (2020).

    Article 

    Google Scholar
     

  • Krishnamurthy, M. et al. Enhancing the antibacterial exercise of polymyxins utilizing a nonantibiotic drug. Infect. Drug Resist. 12, 1393–1405 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olaitan, A. O., Morand, S. & Rolain, J. M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in micro organism. Entrance. Microbiol. 5, 1–18 (2014).

    Article 

    Google Scholar
     

  • Henriques, S. T., Melo, M. N. & Castanho, M. A. R. B. Cell-penetrating peptides and antimicrobial peptides: How totally different are they?. Biochem. J. 399, 1–7 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahnsen, J. S., Franzyk, H., Sandberg-Schaal, A. & Nielsen, H. M. Antimicrobial and cell-penetrating properties of penetratin analogs: Impact of sequence and secondary construction. Biochim. Biophys. Acta Biomembr. 1828, 223–232 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Splith, Okay. & Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J. 40, 387–397 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here