Home Chemistry Modular meeting of indole alkaloids enabled by multicomponent response

Modular meeting of indole alkaloids enabled by multicomponent response

Modular meeting of indole alkaloids enabled by multicomponent response

[ad_1]

  • Stempel, E. & Gaich, T. Cyclohepta[b]indoles: a privileged construction motif in pure merchandise and drug design. Acc. Chem. Res. 49, 2390–2402 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, Y., Li, Y., Yan, C., Yan, M. & Tang, Z. Indole: a privileged scaffold for the design of anti-cancer brokers. Eur. J. Med. Chem. 183, 111691–111708 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishikura, M., Abe, T., Choshi, T. & Hibino, S. Easy indole alkaloids and people with a non-rearranged monoterpenoid unit. Nat. Prod. Rep. 27, 1630–1680 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wibowo, J. T. et al. Marine-drived indole alkaloids and their organic and pharmacological actions. Mar. Medication 20, 3 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chauhan, M., Saxena, A. & Saha, B. An perception in anti-malarial potential of indole scaffold: a overview. Eur. J. Med. Chem. 218, 113400–113412 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, W. I. The supply of indole alkaloids. Science 153, 954–956 (1966).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo, J. et al. Scaffold hopping by web photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reisenbauer, J. C., Inexperienced, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons by way of nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, J. et al. Synthesis and pharmacological analysis of tetrahydro-γ-carboline derivatives as potent anti-inflammatory brokers focusing on cyclic GMP-AMP synthase. J. Med. Chem. 64, 7667–7690 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herraiz, T. & Galisteo, J. Tetrahydro-β-carboline alkaloids happen in fruits and fruit juices. exercise as antioxidants and radical scavengers. J. Agric. Meals. Chem. 51, 7156–7161 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beato, A., Gori, A., Boucherle, B., Peuchmaur, M. & Haudecoeur, R. β-carboline as a privileged scaffold for multitarget methods in Alzheimer’s illness remedy. J. Med. Chem. 64, 1392–1422 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, R., Peng, W., Wang, Z. & Xu, A. β-carboline alkaloids: biochemical and pharmacological capabilities. Curr. Med. Chem. 14, 479–500 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, J., Dan, W. & Wan, J. Pure and artificial β-carboline as a privileged antifungal scaffolds. Eur. J. Med. Chem. 229, 114057–114074 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stitzel, R. E. The organic destiny of reserpine. Pharmacol. Rev. 28, 179–208 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • Galiè, N. et al. Al preliminary use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N. Engl. J. Med. 373, 834–844 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, R. et al. Repurposing of the antihistamine mebhydrolin napadisylate for the remedy of Zika virus an infection. Bioorg. Chem. 128, 106024–106033 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doody, R. S. et al. Impact of dimebon on cognition, actions of each day dwelling, behaviour, and world operate in sufferers with mild-to-moderate Alzheimer’s illness: a randomized, double-blind, placebo-controlled research. Lancet 372, 207–215 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ustyugov, A. et al. New therapeutic property of demibon as a neuroprotective agent. Curr. Med. Chem. 25, 5315–5326 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, Q. et al. Fungal indole alkaloid biogenesis by way of evolution of a bifunctional reductase/diels-alderase. Nat. Chem. 11, 972–980 (2019).

    Article 

    Google Scholar
     

  • Mizoguchi, H., Oikawa, H. & Oguri, H. Biogenetically impressed synthesis and skeletal diversification of indole alkaloids. Nat. Chem. 6, 57–64 (2017).

    Article 

    Google Scholar
     

  • Festa, A. A., Voskressensky, L. G. & Van der Eycken, E. V. Seen light-mediated chemistry of indoles and associated heterocycles. Chem. Soc. Rev. 48, 4401–4423 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schatz, D. J., Kuenstner, E. J., George, D. T. & Pronin, S. V. Synthesis of rearranged indole diterpenes of the paxilline sort. Nat. Prod. Rep. 39, 946–968 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancianesi, S., Palmieri, A. & Petrini, M. Artificial approaches to 3-(2-nitroalkyl) indoles and their use to entry tryptamines and associated bioactive compounds. Chem. Rev. 114, 7108–9149 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zi, W., Zuo, Z. & Ma, D. Intramolecular dearomative oxidative coupling of indoles: a unified technique for the overall synthesis of indoline alkaloids. Acc. Chem. Res. 48, 702–711 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, C. & You, S.-L. Catalytic uneven dearomatization (CADA) reaction-enabled whole synthesis of indole-based pure merchandise. Nat. Prod. Rep. 36, 1589–1605 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X.-Y. & Qin, Y. Indole alkaloid synthesis facilitated by photoredox catalytic cascade reactions. Acc. Chem. Res. 52, 1877–1891 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, R. N., Maiti, B. & Chanda, Okay. Utility of pictet-spengler response to indole-based alkaloids containing tetrahydro-β-carboline scaffold in combinatorial chemistry. ACS Comb. Sci. 19, 199–228 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, J., Dan, W., Zhang, Y. & Wang, J. Current developments on synthesis and organic actions of γ-carbolines. Europ. J. Med. Chem. 157, 447–461 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Reguera, L. & Rivera, D. Multicomponent response toolbox for peptide macrocyclization and stapling. Chem. Rev. 119, 9836–9860 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dömling, A., Wang, W. & Wang, Okay. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiri, M. Indoles in multicomponent processes (MCPS). Chem. Rev. 112, 3508–3549 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nia, R. H.; Taati, Z. & Mamaghani, M. Multi-component synthesis of indole-substituted heterocycles- a overview. Polycycl. Aromat. Compd. https://doi.org/10.1080/10406638.2023.2173622 (2023).

  • Zhang, J. et al. Uneven phosphoric acid-catalyzed four-component Ugi response. Science 361, eaas8707 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ugi, I., Meyr, R., Fetzer, U. & Steinbrückner, C. Versuche mit isonitrilen. Angew. Chem. Int. Ed. 71, 386 (1959).


    Google Scholar
     

  • Pan, S. C. & Listing, B. Catalytic three-component Ugi response. Angew. Chem. Int. Ed. 47, 3622–3625 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y., Wang, Q. & Gao, S. Current advances within the intramolecular Mannich response in pure merchandise whole synthesis. Org. Chem. Entrance. 5, 1049–1066 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Arrayás, R. G. & Carretero, J. C. Catalytic uneven direct Mannich response: a strong software for the synthesis of α,β-diamino acids. Chem. Soc. Rev. 38, 1940–1948 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Noble, A. & Anderson, J. C. Nitro-Mannich response. Chem. Rev. 113, 2887–2939 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuend, S. J., Coughlin, M. P., Lalonde, M. P. & Jacobsen, E. N. Scalable catalytic uneven strecker syntheses of unnatural α-amino acids. Nature 461, 968–970 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Liu, X. & Feng, X. Uneven srecker reactions. Chem. Rev. 111, 6947–6983 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kappe, C. O. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron 49, 6937–6963 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Wu, H. B., Wang, Z. M. & Tao, L. The Hantzsch response in polymer chemistry: synthesis and tentative utility. Polym. Chem. 8, 7290–7296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hu, X. et al. Enantioselective catalytic hantzsch dihydropyridine synthesis. ACS Catal. 13, 6675–6682 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ruijter, E., Scheffelaar, R. & Orru, R. V. A. Multicomponent response design within the quest for molecular complexity and variety. Angew. Chem. Int. Ed. 50, 6234–6247 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lai, Z. et al. Multicomponent double Mannich alkylamination involving C(sp2)-H and benzylic C(sp3)-H bonds. Nat. Commun. 13, 435–442 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C., Lai, Z., Xie, H. & Cui, S. Triazenyl alkynes as versatile constructing blocks in multicomponent reactions: diastereoselective synthesis of β-amino amides. Angew. Chem. Int. Ed. 60, 5147–5151 (2020).

    Article 

    Google Scholar
     

  • Huang, B., Zeng, L., Shen, Y. & Cui, S. One-pot multicomponent synthesis of β-amino amides. Angew. Chem. Int. Ed. 56, 4565–4568 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A common carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–421 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trobridge, A., Reich, D. & Gaunt, M. J. Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation. Nature 561, 522–527 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Klose, I., Mauro, G. D., Kaldre, D. & Maulide, N. Inverse hydride shuttle catalysis permits the stereoselective one-step synthesis of complicated frameworks. Nat. Chem. 14, 1306–1310 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandarage, U. Okay., Kuehne, M. E. & Glick, S. D. Whole syntheses of racemic albifloranine and its anti-addictive congeners, together with 18-methoxycoronaridine. Tetrahedron 55, 9405–9424 (1999).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here