[ad_1]
Stempel, E. & Gaich, T. Cyclohepta[b]indoles: a privileged construction motif in pure merchandise and drug design. Acc. Chem. Res. 49, 2390–2402 (2016).
Wan, Y., Li, Y., Yan, C., Yan, M. & Tang, Z. Indole: a privileged scaffold for the design of anti-cancer brokers. Eur. J. Med. Chem. 183, 111691–111708 (2019).
Ishikura, M., Abe, T., Choshi, T. & Hibino, S. Easy indole alkaloids and people with a non-rearranged monoterpenoid unit. Nat. Prod. Rep. 27, 1630–1680 (2010).
Wibowo, J. T. et al. Marine-drived indole alkaloids and their organic and pharmacological actions. Mar. Medication 20, 3 (2022).
Chauhan, M., Saxena, A. & Saha, B. An perception in anti-malarial potential of indole scaffold: a overview. Eur. J. Med. Chem. 218, 113400–113412 (2021).
Taylor, W. I. The supply of indole alkaloids. Science 153, 954–956 (1966).
Woo, J. et al. Scaffold hopping by web photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).
Reisenbauer, J. C., Inexperienced, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons by way of nitrogen atom insertion. Science 377, 1104–1109 (2022).
Tan, J. et al. Synthesis and pharmacological analysis of tetrahydro-γ-carboline derivatives as potent anti-inflammatory brokers focusing on cyclic GMP-AMP synthase. J. Med. Chem. 64, 7667–7690 (2021).
Herraiz, T. & Galisteo, J. Tetrahydro-β-carboline alkaloids happen in fruits and fruit juices. exercise as antioxidants and radical scavengers. J. Agric. Meals. Chem. 51, 7156–7161 (2003).
Beato, A., Gori, A., Boucherle, B., Peuchmaur, M. & Haudecoeur, R. β-carboline as a privileged scaffold for multitarget methods in Alzheimer’s illness remedy. J. Med. Chem. 64, 1392–1422 (2021).
Cao, R., Peng, W., Wang, Z. & Xu, A. β-carboline alkaloids: biochemical and pharmacological capabilities. Curr. Med. Chem. 14, 479–500 (2007).
Dai, J., Dan, W. & Wan, J. Pure and artificial β-carboline as a privileged antifungal scaffolds. Eur. J. Med. Chem. 229, 114057–114074 (2022).
Stitzel, R. E. The organic destiny of reserpine. Pharmacol. Rev. 28, 179–208 (1976).
Galiè, N. et al. Al preliminary use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N. Engl. J. Med. 373, 834–844 (2015).
Zhou, R. et al. Repurposing of the antihistamine mebhydrolin napadisylate for the remedy of Zika virus an infection. Bioorg. Chem. 128, 106024–106033 (2022).
Doody, R. S. et al. Impact of dimebon on cognition, actions of each day dwelling, behaviour, and world operate in sufferers with mild-to-moderate Alzheimer’s illness: a randomized, double-blind, placebo-controlled research. Lancet 372, 207–215 (2008).
Ustyugov, A. et al. New therapeutic property of demibon as a neuroprotective agent. Curr. Med. Chem. 25, 5315–5326 (2018).
Duan, Q. et al. Fungal indole alkaloid biogenesis by way of evolution of a bifunctional reductase/diels-alderase. Nat. Chem. 11, 972–980 (2019).
Mizoguchi, H., Oikawa, H. & Oguri, H. Biogenetically impressed synthesis and skeletal diversification of indole alkaloids. Nat. Chem. 6, 57–64 (2017).
Festa, A. A., Voskressensky, L. G. & Van der Eycken, E. V. Seen light-mediated chemistry of indoles and associated heterocycles. Chem. Soc. Rev. 48, 4401–4423 (2019).
Schatz, D. J., Kuenstner, E. J., George, D. T. & Pronin, S. V. Synthesis of rearranged indole diterpenes of the paxilline sort. Nat. Prod. Rep. 39, 946–968 (2022).
Lancianesi, S., Palmieri, A. & Petrini, M. Artificial approaches to 3-(2-nitroalkyl) indoles and their use to entry tryptamines and associated bioactive compounds. Chem. Rev. 114, 7108–9149 (2014).
Zi, W., Zuo, Z. & Ma, D. Intramolecular dearomative oxidative coupling of indoles: a unified technique for the overall synthesis of indoline alkaloids. Acc. Chem. Res. 48, 702–711 (2015).
Zheng, C. & You, S.-L. Catalytic uneven dearomatization (CADA) reaction-enabled whole synthesis of indole-based pure merchandise. Nat. Prod. Rep. 36, 1589–1605 (2019).
Liu, X.-Y. & Qin, Y. Indole alkaloid synthesis facilitated by photoredox catalytic cascade reactions. Acc. Chem. Res. 52, 1877–1891 (2019).
Rao, R. N., Maiti, B. & Chanda, Okay. Utility of pictet-spengler response to indole-based alkaloids containing tetrahydro-β-carboline scaffold in combinatorial chemistry. ACS Comb. Sci. 19, 199–228 (2017).
Dai, J., Dan, W., Zhang, Y. & Wang, J. Current developments on synthesis and organic actions of γ-carbolines. Europ. J. Med. Chem. 157, 447–461 (2018).
Reguera, L. & Rivera, D. Multicomponent response toolbox for peptide macrocyclization and stapling. Chem. Rev. 119, 9836–9860 (2019).
Dömling, A., Wang, W. & Wang, Okay. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).
Shiri, M. Indoles in multicomponent processes (MCPS). Chem. Rev. 112, 3508–3549 (2012).
Nia, R. H.; Taati, Z. & Mamaghani, M. Multi-component synthesis of indole-substituted heterocycles- a overview. Polycycl. Aromat. Compd. https://doi.org/10.1080/10406638.2023.2173622 (2023).
Zhang, J. et al. Uneven phosphoric acid-catalyzed four-component Ugi response. Science 361, eaas8707 (2018).
Ugi, I., Meyr, R., Fetzer, U. & Steinbrückner, C. Versuche mit isonitrilen. Angew. Chem. Int. Ed. 71, 386 (1959).
Pan, S. C. & Listing, B. Catalytic three-component Ugi response. Angew. Chem. Int. Ed. 47, 3622–3625 (2008).
Shi, Y., Wang, Q. & Gao, S. Current advances within the intramolecular Mannich response in pure merchandise whole synthesis. Org. Chem. Entrance. 5, 1049–1066 (2018).
Arrayás, R. G. & Carretero, J. C. Catalytic uneven direct Mannich response: a strong software for the synthesis of α,β-diamino acids. Chem. Soc. Rev. 38, 1940–1948 (2009).
Noble, A. & Anderson, J. C. Nitro-Mannich response. Chem. Rev. 113, 2887–2939 (2013).
Zuend, S. J., Coughlin, M. P., Lalonde, M. P. & Jacobsen, E. N. Scalable catalytic uneven strecker syntheses of unnatural α-amino acids. Nature 461, 968–970 (2009).
Wang, J., Liu, X. & Feng, X. Uneven srecker reactions. Chem. Rev. 111, 6947–6983 (2011).
Kappe, C. O. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron 49, 6937–6963 (1993).
Wu, H. B., Wang, Z. M. & Tao, L. The Hantzsch response in polymer chemistry: synthesis and tentative utility. Polym. Chem. 8, 7290–7296 (2017).
Hu, X. et al. Enantioselective catalytic hantzsch dihydropyridine synthesis. ACS Catal. 13, 6675–6682 (2023).
Ruijter, E., Scheffelaar, R. & Orru, R. V. A. Multicomponent response design within the quest for molecular complexity and variety. Angew. Chem. Int. Ed. 50, 6234–6247 (2011).
Lai, Z. et al. Multicomponent double Mannich alkylamination involving C(sp2)-H and benzylic C(sp3)-H bonds. Nat. Commun. 13, 435–442 (2022).
Wang, C., Lai, Z., Xie, H. & Cui, S. Triazenyl alkynes as versatile constructing blocks in multicomponent reactions: diastereoselective synthesis of β-amino amides. Angew. Chem. Int. Ed. 60, 5147–5151 (2020).
Huang, B., Zeng, L., Shen, Y. & Cui, S. One-pot multicomponent synthesis of β-amino amides. Angew. Chem. Int. Ed. 56, 4565–4568 (2017).
Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A common carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–421 (2020).
Trobridge, A., Reich, D. & Gaunt, M. J. Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation. Nature 561, 522–527 (2018).
Klose, I., Mauro, G. D., Kaldre, D. & Maulide, N. Inverse hydride shuttle catalysis permits the stereoselective one-step synthesis of complicated frameworks. Nat. Chem. 14, 1306–1310 (2022).
Bandarage, U. Okay., Kuehne, M. E. & Glick, S. D. Whole syntheses of racemic albifloranine and its anti-addictive congeners, together with 18-methoxycoronaridine. Tetrahedron 55, 9405–9424 (1999).
[ad_2]