Home Chemistry Nanoporous carbons based mostly on coordinate natural polymers as an environment friendly and eco-friendly nano-sorbent for adsorption of phenol from wastewater

Nanoporous carbons based mostly on coordinate natural polymers as an environment friendly and eco-friendly nano-sorbent for adsorption of phenol from wastewater

Nanoporous carbons based mostly on coordinate natural polymers as an environment friendly and eco-friendly nano-sorbent for adsorption of phenol from wastewater

[ad_1]

  • Chand Meena, M., Band, R. & Sharma, G. Phenol and its toxicity: A case report. Iran. J. Toxicol. 8, 1222–1224 (2015).


    Google Scholar
     

  • Sharafinia, S. et al. Adsorption of phenol from each acidic and fundamental industrial waste through newly synthesized metallic natural framework hybrid sensible adsorbents. ACS Appl. Eng. Mater. 1, 1554–1565 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Karri, R. R., Gobinath, R. & Dehghani, M. H. Comfortable Computing Methods in Stable Waste and Wastewater Administration (Elsevier, 2021).


    Google Scholar
     

  • Keyhanian, M. & Farmanzadeh, D. Boosting adsorption means of toluene, phenol, and aniline pollution in B38 borofullerene through doping course of. Appl. Surf. Sci. 587, 152841 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lainé, J., Foucaud, Y., Bonilla-Petriciolet, A. & Badawi, M. Molecular image of the adsorption of phenol, toluene, carbon dioxide and water on kaolinite basal surfaces. Appl. Surf. Sci. 585, 152699 (2022).

    Article 

    Google Scholar
     

  • Alavinia, S., Ghorbani-Vaghei, R., Asadabadi, S. & Atrian, A. Sodium alginate/diethyleneamine-triazine-sulfonamide nanocomposite for adsorptive elimination of Pb(II) and methyl violet from aqueous options. Mater. Chem. Phys. 293, 126915 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Allahkarami, E., Dehghan Monfared, A., Silva, L. F. O. & Dotto, G. L. Towards a mechanistic understanding of adsorption habits of phenol onto a novel activated carbon composite. Sci. Rep. 13, 167 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, F., Chung, S., Oh, G. & Search engine marketing, T. S. Three-dimensional graphene oxide nanostructure for quick and environment friendly water-soluble dye elimination. ACS Appl. Mater. Interfaces. 4, 922–927 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zazouli, M. A., Azari, A., Dehghan, S. & Salmani Malekkolae, R. Adsorption of methylene blue from aqueous answer onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core. Water Sci. Technol. 74, 2021–2035 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badi, M. Y., Azari, A., Esrafili, A., Ahmadi, E. & Gholami, M. Efficiency analysis of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in eradicating fluoride from aqueous answer. J. Mazandaran Univ. Med. Sci. 25, 128–142 (2015).


    Google Scholar
     

  • Esrafili, A., Rezaei Kalantary, R., Azari, A., Ahmadi, E. & Gholami, M. Removing of diethyl phthalate from aqueous answer utilizing persulfate-based (UV/Na2S2O8/Fe2+) superior oxidation course of. J. Mazandaran Univ. Med. Sci. 25, 122–135 (2016).


    Google Scholar
     

  • Malakootian, M., Nasiri, A. & Heidari, M. R. Removing of phenol from metal plant wastewater in three dimensional electrochemical (TDE) course of utilizing CoFe2O4@AC/H2O2. Z. Phys. Chem. 234, 1661–1679 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nasiri, A., Rajabi, S., Hashemi, M. & Nasab, H. CuCoFe2O4@MC/AC as a brand new hybrid magnetic nanocomposite for metronidazole elimination from wastewater: Bioassay and toxicity of effluent. Sep. Purif. Technol. 296, 121366 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, I. et al. Large electrical conductivity enhancement of multilayer graphene/polystyrene composites utilizing a nonconductive filler. ACS Appl. Mater. Interfaces. 6, 16472–16475 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasiri, A., Rajabi, S. & Hashemi, M. CoFe2O4@Methylcellulose/AC as a brand new, inexperienced, and eco-friendly nano-magnetic adsorbent for elimination of reactive pink 198 from aqueous answer. Arab. J. Chem. 15, 103745 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nasiri, A. et al. Adsorption of tetracycline utilizing CuCoFe2O4@Chitosan as a brand new and inexperienced magnetic nanohybrid adsorbent from aqueous options: Isotherm, kinetic and thermodynamic research. Arab. J. Chem. 15, 104014 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Wang, Y., Hou, H., Wang, J. & Hao, C. Ultrasonic technique to synthesize glucan-g-poly (acrylic acid)/sodium lignosulfonate hydrogels and research of their adsorption of Cu2+ from aqueous answer. ACS Maintain. Chem. Eng. 5, 6438–6446 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kong, D. et al. Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for extremely selective elimination of copper(II). ACS Maintain. Chem. Eng. 5, 7401–7409 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S., Zhou, Y., Nie, W., Music, L. & Zhang, T. Preparation of uniform magnetic chitosan microcapsules and their software in adsorbing copper ion(II) and chromium ion(III). Ind. Eng. Chem. Res. 51, 14099–14106 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sharifi, N., Nasiri, A., Martínez, S. S. & Amiri, H. Synthesis of Fe3O4@activated carbon to deal with metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay. J. Photochem. Photobiol. A 427, 113845 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nasiri, A., Tamaddon, F., Mosslemin, M. H., Amiri Gharaghani, M. & Asadipour, A. Magnetic nano-biocomposite CuFe2O4@ methylcellulose (MC) ready as a brand new nano-photocatalyst for degradation of ciprofloxacin from aqueous answer. Environ. Well being Eng. Manag. J. 6, 41–51 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hu, M. et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134, 2864–2867 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mubarak, M. F., Ahmed, A. M. & SaadGabr, S. Nanoporous Carbon Supplies Towards Phenolic Compounds Adsorption (IntechOpen, 2021).


    Google Scholar
     

  • Malgras, V. et al. Fabrication of nanoporous carbon supplies with hard-and soft-templating approaches: A evaluation. J. Nanosci. Nanotechnol. 19, 3673–3685 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Riet, R., Amayuelas, E., Lodewyckx, P., Lefebvre, M. H. & Ania, C. O. Novel alternatives for nanoporous carbons as energetic supplies. Carbon 164, 129–132 (2020).

    Article 

    Google Scholar
     

  • Rozyyev, V. et al. Excessive-capacity methane storage in versatile alkane-linked porous fragrant community polymers. Nat. Vitality 4, 604–611 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ghasemian Lemraski, E., Sharafinia, S. & Alimohammadi, M. New activated carbon from Persian mesquite grain as a superb adsorbent. Phys. Chem. Res. 5, 81–98 (2017).

    CAS 

    Google Scholar
     

  • Xu, H. et al. Nanoporous activated carbon derived from rice husk for prime efficiency supercapacitor. J. Nanomater. 2014, 1–10 (2014).

    Article 

    Google Scholar
     

  • Tabarkhoon, F. et al. Synthesis of novel and tunable Micro-Mesoporous carbon nitrides for Extremely-Excessive CO2 and H2S seize. Chem. Eng. J. 456, 140973 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Coordination-supported natural polymers: Mesoporous inorganic–natural supplies with most well-liked stability. Inorg. Chem. Entrance. 5, 2018–2022 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sharafinia, S., Farrokhnia, A. & Ghasemian, E. Comparative research of adsorption of safranin o by TiO2/activated carbon and chitosan/TiO2/activated carbon adsorbents. Phys. Chem. Res. 9, 605–621 (2021).

    CAS 

    Google Scholar
     

  • Chen, S. et al. Equilibrium and kinetic research of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252, 149–156 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Azad, M., Rostamizadeh, S., Estiri, H. & Nouri, F. Extremely-small and extremely dispersed Pd nanoparticles contained in the pores of ZIF-8: Sustainable method to waste-minimized Mizoroki–Heck cross-coupling response based mostly on reusable heterogeneous catalyst. Appl. Organomet. Chem. 33, e4952 (2019).

    Article 

    Google Scholar
     

  • Abbasi, Z., Farrokhnia, A., Garcia-Lopez, E. I., Shoushtari, M. Z. & Aghaie, E. Synthesis of ZnO–Ag2CO3–Fe3O4@ rGO core–shell construction: Magnetically separable photocatalyst for degradation of MB utilizing the Field–Behnken design. J. Mater. Sci. Mater. Electron. 31, 19554–19568 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hasan, M. A., Hasan, R. O. & Al-Rawi, Ok. F. Analysis and comparability of the optimization parameters based mostly on univariate and multivariate methods for estimation atorvastatin calcium with novel reverse oblique spectrophotometric technique. Syst. Rev. Pharm. 11, 248–259 (2020).

    CAS 

    Google Scholar
     

  • Suresh, R., Swamivelmanickam, M. & Sivakrishnan, S. Field–Behnken design method for optimization of a liquid chromatographic technique for the dedication of anti leukemic medication in bulk and pharmaceutical formulations. J. Pharm. Res. Int. 1, 67–77 (2020).

    Article 

    Google Scholar
     

  • Sharafinia, S., Farrokhnia, A. & Lemraski, E. G. Optimized safranin adsorption onto poly (vinylidene fluoride)-based nanofiber through response floor methodology. Mater. Chem. Phys. 276, 125407 (2021).

    Article 

    Google Scholar
     

  • Dahaghin, Z., Kilmartin, P. A. & Mousavi, H. Z. Novel ion imprinted polymer electrochemical sensor for the selective detection of lead(II). Meals Chem. 303, 125374 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alipour, M. et al. Optimising the essential violet 16 adsorption from aqueous options by magnetic graphene oxide utilizing the response floor mannequin based mostly on the Field–Behnken design. Int. J. Environ. Anal. Chem. 101, 758–777 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jaime, I. & Dolores, M. Business Important Oils: Sustainable Alternate options within the Agri-Meals Trade (Springer, 2019).


    Google Scholar
     

  • Lin, S. et al. Pd (II)-imprinted chitosan adsorbent for selective adsorption of Pd (II): Optimizing the imprinting course of by way of Field–Behnken experimental design. ACS Omega 6(20), 13057–13065 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivamani, S., Prasad, B. N., Nithya, Ok., Sivarajasekar, N. & Hosseini-Bandegharaei, A. Again-propagation neural community: Field–Behnken design modelling for optimization of copper adsorption on orange zest biochar. Int. J. Environ. Sci. Technol. 1, 1–16 (2021).


    Google Scholar
     

  • Elmoubarki, R. et al. Field–Behnken experimental design for the optimization of methylene blue adsorption onto Aleppo pine cones. J. Mater. Environ. Sci 8, 2184–2191 (2017).

    CAS 

    Google Scholar
     

  • Beakou, B. H. et al. Novel activated carbon from Manihot esculenta Crantz for elimination of methylene blue. Maintain. Environ. Res. 27, 215–222 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nam, S.-N., Cho, H., Han, J., Her, N. & Yoon, J. Photocatalytic degradation of acesulfame Ok: Optimization utilizing the Field–Behnken design (BBD). Course of Saf. Environ. Prot. 113, 10–21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Biglarijoo, N., Mirbagheri, S. A., Ehteshami, M. & Ghaznavi, S. M. Optimization of Fenton course of utilizing response floor methodology and analytic hierarchy course of for landfill leachate therapy. Course of Saf. Environ. Prot. 104, 150–160 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Zhang, X. & Liu, Y. Supercritical carbon dioxide extraction of Ganoderma lucidum spore lipids. LWT 70, 16–23 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. et al. Optimization of air jet impingement drying of okara utilizing response floor methodology. Meals Management 59, 743–749 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Azari, A., Nabizadeh, R., Mahvi, A. H. & Nasseri, S. Built-in Fuzzy AHP-TOPSIS for choosing the right colour elimination course of utilizing carbon-based adsorbent supplies: Multi-criteria resolution making vs systematic evaluation approaches and modeling of textile wastewater therapy in actual circumstances. Int. J. Environ. Anal. Chem. 102, 7329–7344 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Azari, A., Nabizadeh, R., Mahvi, A. H. & Nasseri, S. Magnetic multi-walled carbon nanotubes-loaded alginate for therapy of business dye manufacturing effluent: Adsorption modelling and course of optimisation by central composite face-central design. Int. J. Environ. Anal. Chem. 103, 1509–1529 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Koosha, S., Alavinia, S. & Ghorbani-Vaghei, R. CuI nanoparticles-immobilized on a hybrid materials composed of IRMOF-3 and a sulfonamide-based porous natural polymer as an environment friendly nanocatalyst for one-pot synthesis of two, 3-disubstituted benzo [b] furans. Arab. J. Chem. 16, 104975 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Luziana, F. & Permatasari, D. Kajian pola isoterm adsorpsi zat pewarna kristal violet pada adsorben dari karbon cangkang kelapa sawit dengan pelapisan partikel Fe3O4. Prosid. SINTA 3, 1–10 (2020).


    Google Scholar
     

  • Pasalari, H., Ghaffari, H. R., Mahvi, A. H., Pourshabanian, M. & Azari, A. Activated carbon derived from date stone as pure adsorbent for phenol elimination from aqueous answer. Desalin. Water Deal with. 72, 406–417 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gholamiyan, S., Hamzehloo, M. & Farrokhnia, A. RSM optimized adsorptive elimination of erythromycin utilizing magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic research. Maintain. Chem. Pharm. 17, 100309 (2020).

    Article 

    Google Scholar
     

  • Mojoudi, N. et al. Phenol adsorption on excessive microporous activated carbons ready from oily sludge: Equilibrium, kinetic and thermodynamic research. Sci. Rep. 9, 19352 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganguly, P., Sarkhel, R. & Das, P. Synthesis of pyrolyzed biochar and its software for dye elimination: Batch, kinetic and isotherm with linear and non-linear mathematical evaluation. Surf. Interfaces 20, 100616 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abdelkhalek, A., El-Latif, M. A., Ibrahim, H., Hamad, H. & Showman, M. Managed synthesis of graphene oxide/silica hybrid nanocomposites for elimination of fragrant pollution in water. Sci. Rep. 12, 7060 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemraski, E. G. et al. Antimicrobial double-layer wound dressing based mostly on chitosan/polyvinyl alcohol/copper: In vitro and in vivo evaluation. Int. J. Nanomed. 16, 223 (2021).

    Article 

    Google Scholar
     

  • Radoor, S. et al. Ecofriendly and low-cost bio adsorbent for environment friendly elimination of methylene blue from aqueous answer. Sci. Rep. 12, 20580 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerofolini, G. A mannequin which permits for the Freundlich and the Dubinin–Radushkevich adsorption isotherms. Surf. Sci. 51, 333–335 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bedin, Ok. C., Martins, A. C., Cazetta, A. L., Pezoti, O. & Almeida, V. C. KOH-activated carbon ready from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic research for methylene blue elimination. Chem. Eng. J. 286, 476–484 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. et al. Enhanced adsorptive elimination of p-nitrophenol from water by aluminum metallic–natural framework/lowered graphene oxide composite. Sci. Rep. 6, 25638 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Quick adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous options. J. Colloid Interface Sci. 436, 90–98 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Z. et al. Recyclable graphene oxide grafted with poly (N-isopropylacrylamide) and its enhanced selective adsorption for phenols. Appl. Surf. Sci. 362, 459–468 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding, C. et al. Extremely selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol. 107, 957–964 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Adsorption of p-nitrophenols (PNP) on microalgal biochar: evaluation of excessive adsorption capability and mechanism. Biores. Technol. 244, 1456–1464 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q., Ma, C., Duan, W., Lang, D. & Pan, B. Coupling adsorption and degradation in p-nitrophenol elimination by biochars. J. Clear. Prod. 271, 122550 (2020).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here